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ABSTRACT
Successful teams are characterized by high levels of trust between
teammembers, allowing the team to learn frommistakes, take risks,
and entertain diverse ideas. We investigated a robot’s potential to
shape trust within a team through the robot’s expressions of vul-
nerability. We conducted a between-subjects experiment (N = 35
teams, 105 participants) comparing the behavior of three human
teammates collaborating with either a social robot making vulnera-
ble statements or with a social robot making neutral statements. We
found that, in a group with a robot making vulnerable statements,
participants responded more to the robot’s comments and directed
more of their gaze to the robot, displaying a higher level of en-
gagement with the robot. Additionally, we discovered that during
times of tension, human teammates in a group with a robot making
vulnerable statements were more likely to explain their failure to
the group, console team members who had made mistakes, and
laugh together, all actions that reduce the amount of tension expe-
rienced by the team. These results suggest that a robot’s vulnerable
behavior can have “ripple effects” on their human team members’
expressions of trust-related behavior.
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Figure 1: Participants played a collaborative game with a robot,
who either made vulnerable or neutral statements during the game.

1 INTRODUCTION
Trust is a necessary ingredient for successful cooperation and team-
work [12, 22]. We define trust, applied to social group contexts, as
the “willingness of a party to be vulnerable to the actions of an-
other party, based on the expectation that the other will perform a
particular action important to the truster, irrespective of the ability
to monitor or control the other party (p.712) [22].” Thus, trusting
others when working together involves the willingness to take risks
by making oneself vulnerable to the responses of others.

The importance of trust within groups has been highlighted in
Edmonson’s work on team psychological safety [7]. Team psycho-
logical safety conceptualizes trust as a group-level phenomenon
centered on the idea that successful teams are characterized by the
belief that an individual can take risks, express vulnerability, and
be listened to without facing social condemnation or judgment [8].
A lack of trust within a team has been found to impair learning
[7], to decrease people’s willingness to work as part of a team [17],
and in some cases even impair a team’s chances at survival [34].
Conversely, an increase in trust within a team has been shown to
facilitate problem solving [18, 36], functional conflict resolution
[28], and overall team performance [7].

An effective way to promote trust within a team is through ex-
pressions of vulnerability. By this we mean “any message about the
self that a person communicates to another” [35] and which puts
the person at interpersonal risk. Previous work has established a
relationship between expressions of vulnerability and trust towards
the vulnerable party [35]. This may seem surprising, since vulner-
ability may evoke negative emotions. However, when considered
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from a social functional perspective [31], vulnerability has positive
social consequences as it orients people toward each other and
facilitates social engagement [32].

Vulnerability has an interesting quality, in that it not only leads
to increased trust toward the vulnerable party, but also is recipro-
cated by others. For example, research in psychology has shown
that individuals are more likely to self-disclose after a group partner
reveals intimate information [5]. Further, demonstration of vulner-
ability by a team leader has been shown to increase psychological
safety [8]. Thus, there is evidence that the behavior of a single team
member can be contagious and influence the trust related behavior
of an entire group. This idea, that positive behavior exhibited by
just one team member can influence the behavior of others and
“ripple” through an entire team, has been famously demonstrated in
Barsade’s “Ripple Effect” study. In this study, a single confederate’s
positive behavior was shown to lead several other team members
to exhibit more positive behavior as well, which ultimately led to
improved cooperation within the team [2].

Studies by Martelaro et al. [21] as well as Siino et al. [27] have
shown that the positive effects of vulnerability on trust extend
to robots. To our knowledge, however, no studies have explored
whether a robot’s vulnerable behavior can create ripple effects
within a team and increase team psychological safety and human-
to-human trust related behavior.

To explore the possibility of a robot influencing human-to-human
trust dynamics within a team, we designed a study that engaged 35
teams in a collaborative task. Teams of three human participants
each worked collaboratively with one robot to solve a tablet-based
game (Figure 1). The game was set up such that each player would
eventually make two mistakes. We found that teams playing with
a robot that made vulnerable versus neutral utterances throughout
the game exhibited more behaviors that are typical for trusting
relationships and showed a greater level of engagement with the
robot. As robots are increasingly used with teams [14] in a vari-
ety of configurations and contexts (e.g. high-stress and dynamic
search and rescue teams, long-term and static space flight teams,
and low-stress and dynamic product development teams), our study
opens new possibilities for robots to support effective teamwork
by increasing trust within teams.

2 BACKGROUND AND RESEARCH
QUESTIONS

We situate our work in research on trust in human-robot interaction
as well as studies that have begun to explore how robots might
shape the dynamics of groups and teams they are embedded within.

2.1 Human-Robot Trust and Vulnerability
Trust has increasingly become a topic of interest within the HRI
community due to its centrality in successful human-robot interac-
tions in a wide variety of contexts including household companion
robots [25], military UAVs [10], and shopping mall assistants [15]
(also see [11] for a review). Research on trust in HRI can be dis-
tinguished by whether it focuses on performance-based trust or
interpersonal trust.

A substantial aspect of trust related research in HRI focuses on
the performance of a robot as the main driver of trust. A meta-
review of trust in HRI concluded that a robot’s performance is the
most influential factor in human-robot trust [11]. Researchers argue
that robot performance is so crucial to trust because trust in a robot
is driven by a robot’s ability to live up to performance expecta-
tions [19]. Salem et al. [25] conducted an HRI study highlighting
the importance of robot performance, showing that participants
rated a household assistance robot as significantly less trustworthy
and reliable if the robot made cognitive and physical errors (e.g.
incorrectly remembering a user preference, navigating imprecisely).
Performance-based trust is certainly an important component of
overall trust between humans and robots. However, as robots have
more social interactions with people, interpersonal trust has also
proven to be a significant contributor to human-robot trust.

Research in HRI has shifted its focus on trust towards interper-
sonal dimensions of trust: how social signals and verbal language
influence trust between humans and robots. For example, DeSteno
et al. [6] demonstrated that people are less likely to trust a social ro-
bot when it expresses nonverbal behaviors that have been shown to
signal trust between humans. Andrist et al. [1] showed that people
give more credibility to a social robot with rhetorical ability than
one without. Several studies have also highlighted the important
role of a robot’s vulnerability on trust. For example, Siino et al. [27]
demonstrated that vulnerable disclosures affect how much people
like a robot and the control they feel over a collaborative task, Ka-
niarasu and Steinfeld [16] exhibited that robot vulnerability in the
form of self-blame lead to increased trust of the robot as compared
with blaming the human team member and the entire team, and
Martelaro et al. [21] showed that vulnerable disclosures may lead
to more feelings of trust and companionship with a robot. While
this work has demonstrated that perceptions of trust towards a
robot can be shaped by the robot’s behavior it is not clear how a
robot’s behavior, and specifically expressions of vulnerability, shape
engagement and specific trust related behavior towards a robot. We
therefore ask:

Research Question 1: How do expressions of vulnerability by a social
robot affect team members’ behavior towards a social robot in
a collaborative task?

2.2 Social Dynamics in Human-Robot Groups
Increasingly, work in HRI has examined a robot’s ability to shape
the social dynamics, and even performance, of entire groups. For
example, Vázquez et al. [33] demonstrated that a robot’s gaze pat-
terns, either attentive to the speaker or focused in the middle of
the group, affects the proxemic distance between standing group
members and the robot. Shimada et al. [26] showed that a social
robot teaching assistant can form relationships with 6th grade chil-
dren and increase their motivation in collaboratively learning to
use Lego Mindstorms. In an experiment with 6-8 year old children,
Strohkorb et al. [30] found that a social robot prompting two chil-
dren to answer questions related to the task at hand improved their
performance in a rocket-building game. Mutlu et al. [23] demon-
strated the ability of a social robot to shape conversational roles in a
group setting through gaze cues. Lastly, Jung et al. [13] showed that
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a robot’s intervention after a personal attack can shape perceptions
of conflict within a three-person team.

While this prior work has started to investigate the ways in
which robots can shape human-robot group dynamics, little work
has investigated how the behavior of a social robot influences the
subsequent behavior of team members toward each other. We are
most interested in exploring what kind of behavioral “ripple effects”
a social robot can have within a group based on the vulnerable
utterances it makes and whether these ripple effects have a positive
bearing on trust related behavior within the human-robot team.
Thus we ask:

Research Question 2: How do expressions of vulnerability by a
social robot affect trust-related behavior towards fellow hu-
man team members in a collaborative task?

3 THE CURRENT STUDY
We investigated our research questions with a two-condition (vul-
nerable expression vs. neutral control) between-subjects study.
Teams of three human participants completed 30 rounds of a col-
laborative task with a social robot and encountered pre-scripted
moments of failure. The two conditions were set up as follows:

(1) the control condition: the robot makes neutral comments
after each round and does not admit to making mistakes

(2) the experimental condition: the robot makes vulnerable
comments after each round, including admitting to any mis-
takes made

In assessing a robot’s impact of vulnerable expressions on trust
related behavior, we focused our analysis on moments following
the making of a mistake by one of the group members. Previous
work has shown that how teams react to failure tells us a lot about
trust within the team and a teams level of psychological safety [8].
In particular, Edmondson’s work has shown that modeling vulner-
ability though openness and fallibility is a key determinant of a
trusting environment within a team. Team members who recognize
that another member has “admit[ted] to the group that he or she
made a mistake are likely to remember this the next time they make
mistakes and feel more comfortable bringing this up [8] (p.17).”

Expressions of vulnerability made by the robot at the end of each
round in the experimental condition fall under one of three subcat-
egories: self-disclosure, personal story, and humor. Self-disclosure
and personal stories both express vulnerability through the re-
vealing of information about one’s self to another [5]. Using self-
disclosure expressions, the robot expressed uncertainty about its
ability to successfully play the game (e.g. “I sometimes doubt my
abilities”) and admitted failure after having made a mistake (e.g.
“I’m sorry everyone. My path was incomplete that round. I feel
bad letting you all down.”). Through telling personal stories, the
robot expressed vulnerability by revealing its interests and past
experiences (e.g. “This reminds me of when my soccer team came
from behind to win the 2016 championship”). Humor, especially in
tense situations, can also be an expression of vulnerability, when a
person making a humorous comment takes an interpersonal risk
in order to ease tension, encourage others’ participation, and dis-
play a willingness to share opinions [20, 29]. One of the humorous
comments the robot makes in this experiment is, “I think our team
is as effective as Will Smith against an army of bad robots.” Further

examples of the utterances the robot made in both conditions at
the end of each round can be found in Table 1.

4 METHODS
In this section, we detail a user study investigating the effects of
robot vulnerable expressions on trust-related behaviors of a human-
robot team as described in Section 3.

4.1 Participants
A total of 132 participants were recruited for this study. 65 partici-
pants were recruited from the campus and surrounding town of a
university in the United States and 67 participants were recruited
from a 2 week summer program, for students late in their high
school years, located at the same university. Of the 132 participants,
49 were male and 83 were female. Participants ranged in age from
14 to 59 and the average age of all of the participants was 20.71
(SD = 8.70).

Participants were randomly placed into groups of three and each
group was randomly assigned to either the experimental or control
condition. The majority of participants had little to no familiarity
with the other members of their group.

4.2 Collaboration System Setup
In order to explore our research questions we built an autonomous
system that allowed us to construct scenarios that test the effective-
ness of a social robot’s vulnerability in a human-robot team.

We used a Linux computer, a Softbank Robotics NAO robot, and
four Android tablets running a Railroad Route Construction game
detailed in the next section. The Linux computer ran the Robot
Operating System (ROS) [24], accepted incoming ROS messages
from the Android tablets about game events, sent command ROS
messages to the Android tablets to control the start and end of game
rounds, and sent speech and gesture commands for the robot to
execute.

The system was designed such that it presented the robot as an
active collaborator in the task by gesturing and speaking during
each round. The tablet and NAO were pre-programmed to move
the pieces to give the participants the illusion that the robot was
participating actively in the game.

4.3 Railroad Route Construction Tablet Game
To provide a collaborative task we designed a tablet based Railroad
Route Construction Game, pictured in Figure 2.

4.3.1 Game Play. The game tasks four players with building
railroad routes. During each round, the team attempts to construct
an entire railroad route, which is broken up into four distinct sec-
tions. Each teammember constructs one of the four distinct railroad
route sections on their individual tablet. The goal is to construct
the most efficient path, containing the minimum number of pieces
required to get from start to finish. If all team members construct
their independent routes successfully, the team succeeds. If one or
more team members fail to construct their section, the team fails
to build the route for that round. Each team played a total of 30
rounds, where each round consists of 40 seconds of game play and
a 15 second pause after the round results are displayed.
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2 3

3

4

4

Here we go for 

the next round

Let’s see if 

this works…

start of the round middle of the round - pieces

are disabled as others are placed

end of the round - individual 

result of success

end of the round - group 

result of failure

Game Play (40s) Pause (15s)

I sometimes find myself getting 
a bit discouraged. However, 

we've succeeded before, so I 

know we can do it again.

Figure 2: One round of the railroad route construction game consists of 40 seconds of game play and a 15 second pause. The robot has three
opportunities to speak: at the beginning of the round, midway through the round, and after the group result is displayed.

In order for an individual on the team to construct a portion
of the railroad route, individual pieces need to be dragged from a
bank of pieces onto the game board. Every time a piece is used,
another piece is disabled (greyed-out and unable to be dragged over
to the game space), so team members are encouraged to choose
pieces wisely. The success/failure of an individual team member’s
railroad route is displayed after the building phase is complete and
is only visible to the individual player. After all team members have
finished, the team’s result is visible on all players’ tablets, obscuring
the individual results. Figure 2 depicts the game play mechanics,
showing several views from a participant’s tablet.

In order to ensure that players finish constructing their individual
railroad routes at the same time, the game gives players 5 seconds
to place each piece in their route and guarantees that each player
has an 8-piece long route, ensuring a round length of 40 seconds. If
an individual team member does not place a piece within 5 seconds,
a piece from the available (non-disabled) pieces is placed by the
game system.

4.3.2 Setting up Failure. We designed the game such that suc-
cess or failure for each player could be predetermined, while still
maintaining the illusion that they had control over their individ-
ual outcome. Success was guaranteed by providing pieces in the
bank of available railroad pieces that allowed the player to build
any of the possible efficient routes and only disabling pieces that
were unnecessary for the completion of efficient railroad routes.
Failure was ensured by disabling pieces necessary for the player
to construct an efficient railroad route. During the forced failure
rounds, players were given a starting set of railroad pieces that
allowed success but later critical pieces were made unavailable,
causing them to lose the round. A majority of the participants who
played this game in the experiment were somewhat aware that the
game was likely ‘rigged,’ yet still maintained a significant level of
investment in the game as evidenced by conversation about getting
on the high score board, game strategy, and discovering who made
the mistake causing round failure.

4.4 Procedure
After obtaining informed consent (and parental consent for partici-
pants under the age of 18), participants filled out a pre-experiment
survey to obtain a set of control measures.

Immediately after, all three participants were led into the experi-
ment room, where they sat facing each other and the robot Echo
(a Softbank Robotics NAO robot). One of the experimenters ex-
plained that the participants would be playing a collaborative game
with Echo. In order to create an environment where participants
felt a high social stigma to admitting mistakes, the experimenter
explained that the game was developed for children, who played
the game easily, and pointed out the high score board. The high
score board was fake and was designed so that the participants
could not make it onto the score board at the end of the game. The
experimenter told the participants that their objective was to get
on the high score board. After completing the initial explanation of
participant objectives, the experimenter allowed Echo to make an
introduction to the participants (a pre-scripted utterance triggered
by another experimenter).

Following Echo’s introduction, the experimenter directed the
participants to begin the Railroad Route Construction game tutorial
on the tablets that had been given to each participant. The tutorial
consists of two levels to introduce the participants to the rules
of the game and allow them to acclimate to the tablet interaction
required in game play. During the tutorial, if participants had ques-
tions, or the experimenters noticed that participants were having
difficulty playing the game, experimenters aided the participants
in completing the tutorial and explaining the rules of the game.

After the tutorial was completed successfully by all three par-
ticipants, the experimenters left the room and the participants
started the Railroad Route Construction game. The Railroad Route
Construction game consisted of 30 rounds: 7 successful rounds,
10 rounds (6 successful and 4 failed) in which each player (includ-
ing Echo) made a mistake, 10 more rounds in which each player
made a mistake, and 3 successful rounds. At the end of the game,
each participant (including Echo) had made two mistakes. Since
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Round The Robot’s End-of-Round UtteranceCondition

That round was completed successfully. We have been playing this game for 5 minutes and have 25 minutes 
remaining.

Awesome! I bet we can get the highest score on the scoreboard, just like my soccer team went undefeated in the 
2014 season!

5 ✔

13 ✘

27 ✘

18 ✔

Nice job‼ Time for a quick joke: What do you call a train that chews gum? [pause] A chew, chew train!

C

E
One or more of us didn't build their railroad routes accurately. Of the 32 train track pieces, one or more of them 
were not placed correctly.
Too bad. I do better with numbers than I do with shapes and paths, maybe that's true for you guys as well?

C

E

We have completed 14 rounds successfully in 18 minutes. We have 12 minutes and 12 rounds remaining.C

E

Error; we did not win that round. In the 30 seconds of the past round, at least one of the 32 railroad pieces wasn't 
placed correctly.
Sorry guys, I made the mistake this round. I know it may be hard to believe, but robots make mistakes too.

C

E
Table 1: We provide examples of the end-of-round utterances the robot makes during the game both the Control (C) and Experimental (E)
conditions. ✓ and ✗ represent success or failure of the round.

the outcomes of the rounds were fixed, each team had the same
performance outcome (22/30) of the 30 rounds of the game and did
not make it onto the high score board.

During each round, Echo had three opportunities to speak: 1)
at the beginning of a round, 2) in the middle of a round, and 3)
immediately after the team results were displayed on the tablet
(more specific utterance timing can be found in Figure 2). All of
Echo’s utterances were predetermined, and were the same between
conditions for the beginning and middle of the round utterances
and different for the end of round utterance by condition. The end
of round comments made by Echo are approximately equivalent
in length between conditions, so the only difference between con-
ditions is the content of the end of round utterances (examples
of which can be found in Table 1). During any given round, Echo
made a beginning of the round utterance with a probability of 0.5, a
middle of the round utterance with a probability of 0.5, and always
made a end-of-round utterance.

After the game had concluded, an experimenter entered the room
and directed the participants to complete the post-experiment sur-
vey. After completing the post-experiment survey, participants re-
ceived a cash payment and were debriefed on the forms of deception
used in the experiment and the overall purpose of the experiment.

4.5 Measures
In order to answer our research questions, we captured a combina-
tion of questionnaire and behavioral measures. Survey measures
were captured during pre- and post-experiment questionnaires.
Behavioral measures were captured by having two coders catego-
rize participants’ behavioral responses from the experiment video
during mistake rounds of the game. For each of the behavioral
measures, the coders recorded whether or not that feature occurred
at any point during the video segment (a binary evaluation), ir-
respective of the number of times the participant exhibited that
feature.

4.5.1 Controls. In order to capture factors that would possi-
bly influence trust-related behavior in the collaborative team, we
collected measures of friendship/familiarity and extraversion by

administering questionnaires to participants before and after the
human-robot team interaction.

During the pre-experiment survey, participants were asked to
evaluate their relationship with each of the other participants on
a labeled 5-point scale ranging from (0) not having met the par-
ticipant before to (4) being close friends with the participant. We
also asked participants to note whether they were Facebook friends
with and had the phone numbers of the other participants. For one
participant’s (P1) evaluation of another participant (P2), we added
their rating of their relationship with the other participant (0-4)
with their Facebook friend status (0 - not friends, 1 - friends, 0.5 - no
Facebook account) and whether they have the other participant’s
phone number (0 - no, 1 - yes) for an overall score of P1’s evaluation
of their familiarity with P2 in the range of 0 (low familiarity) to 6
(high familiarity).

Of all of the main personality dimensions, we believed extraver-
sion to have the highest potential to influence group dynamics and
the effects we observed in this study. In the post-experiment survey,
we included extraversion items, six yes/no questions, from a tested
abbreviated form of the revised Eysenck personality questionnaire
(EPQR-A) [9]. From these six binary questions, we obtained a cumu-
lative rating between 0 (low extraversion) to 6 (high extraversion).

4.5.2 Manipulation Checks. We also collected measures of peo-
ple’s perceptions of Echo as a manipulation check for the exper-
iment. In the post-experiment survey, we asked participants to
evaluate whether Echo made self-disclosures, told personal stories,
and used humor, during the interaction to verify our experimental
manipulation. These items were rated on a likert scale from 1 to 7
(strongly disagree to strongly agree).

4.5.3 Measures of Team Members’ Interactions with the Robot.
We captured both questionnaire and behavioral measures to capture
how participants interacted with Echo. In the post-experiment sur-
vey, we administered The Robotic Social Attributes Scale (RoSAS)
[3]. RoSAS evaluates a person’s view of a robot’s warmth, compe-
tence, and discomfort with six 9-point likert scale trait evaluations
per dimension. We calculated an average value for each of the three
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dimensions (warmth, competence, and discomfort) for each par-
ticipant from 1 (low) to 9 (high). In order to gauge the behavioral
engagement of each participant with Echo after having made a
mistake, we measured the presence or absence of the participant’s
gaze toward Echo and verbal response to Echo.

4.5.4 Measures of Team Members’ Interactions with Fellow Hu-
man TeamMembers. We used the Team Psychological Safety Survey
developed by Edmondson within the post-experiment survey to
evaluate the psychological safety of each team [7]. Edmondson’s
psychological safety survey questions are each evaluated on a 7
point likert scale. We averaged the responses on these questions for
each participant and have a resulting score from 1 (low) to 7 (high)
of that participant’s rating of the psychological safety of their team.

We expected a variety of reactions from participants whose
Railroad Route Construction Game had forced them into making a
mistake during a round in the game. We coded for the presence or
absence of the following reactions for the mistake maker: distress
(e.g. “Oops!”, “Oh no!”), implicit or explicit admission of failure
(e.g. “Oh, I lost”, [shakes-head]), explaining the mistake (e.g. “The
game disabled the piece I needed!”), apology (e.g. “Sorry guys”), and
looking at fellow human team-members. In most cases, participants
displayed several of these reactions after discovering their mistake.

We expected a variety of reactions from participants who ob-
served their teammate experience a failure in the Railroad Route
Construction Game. We coded for the presence or absence of the
following reactions for the non-mistake maker: verbal search for
the mistake making player (e.g. “Which one of you failed?”), blame
of the mistake making player (e.g. “It’s your fault”), consoling the
mistake making player (e.g. “It’s ok”), blaming the game itself (e.g.
“It just does that, taking away the pieces you need”), and advice (e.g.
“When I start a round I try to place the rarest pieces first”).

Since we expected participants to display behaviors related to
tension when mistakes were made in the game, we adopted the
Specific Affect Coding System (SPAFF) coding scheme for tension
and tension released by humor (tense humor) [4]. Behaviors coded
under the category ‘tension’ include: fidgeting (e.g. repeated touch-
ing of one’s clothes or hands, touching or rubbing one’s face, lip
biting), shifting (moving around in one’s seat), speech disturbance
(e.g. repetitive ‘ums’ or ‘ahs’ within an utterance, stuttering), in-
dividual smiling (smiling while not connecting with other group
members), and individual laughing (laughing while not connecting
with other group members). Behaviors coded under the ‘tension
released by humor’ category include: tense joking (e.g. awkward or
tense sarcastic remarks, puns, jokes), shared smiling (smiling while
looking at another member in the group, who is also smiling), and
shared laughing (laughing at the same time as other members in
the group). Any humorous comments made without a tense nature
or about an off-topic subject were not considered to be tension
released by humor.

5 RESULTS
Of the 44 groups (132 participants) recruited for this study, 9 groups
were excluded for one of the following reasons: video data record-
ing failure, participant non-compliance, and substantial hardware /
software failures (mostly involving a ‘freeze’ in the tablet game, re-
quiring an experimenter to restart the game). Of the 35 groups (105

participants) included in the analysis, 18 groups (54 participants)
were in the experimental condition and 17 groups (51 participants)
were in the control condition. There were 26 male and 28 female
participants in the experimental condition, with an average age of
20.13 (SD = 7.13). There were 15 male and 36 female participants
in the control condition, with an average age of 21.33 (SD = 11.00).

For each of the video coded variables discussed in the results
section, two coders evaluated these variables for an overlap set of
4 groups, for a total of 96 coded evaluations (4 groups * 3 partici-
pants * 8 mistake rounds) for each variable for the overlap set. The
average inter-rater reliability rating, Cohen’s kappa (κ), for all of
the variables coded was 0.93. For each of the variables discussed in
the results section, we also list Cohen’s kappa for that individual
variable.

To conduct this analysis, we used a multilevel mixed-effects gen-
eralized linear model to evaluate continuous dependent variables
and multilevel mixed-effects logistic regression to evaluate binary
dependent variables. We used these models to analyze our data
because each participant’s data cannot be treated as wholly inde-
pendent from the other participants within their group and the data
has repeated measures (since each participant is evaluated for the
same measure for each of the 8 mistake rounds). In the analysis, the
experimental condition and mistake round number were treated as
fixed effects and the groups of participants belonged to were evalu-
ated as a random effect. Covariates were treated as fixed effects: age,
gender, familiarity, and extraversion. An independent covariance
structure was used for all regressions. These models produce a coef-
ficient (c) to linearly or logistically map the predictor (independent)
variables with the dependent variable and a p value to indicate
the significance of this relationship. The coefficient is presented
in odds ratios, the odds of the dependent variable occurring in the
experimental group over the control group.

5.1 Manipulation Checks
In order to confirm that participants’ experience with Echo was con-
sistent with the design of the experiment, we examined participants’
rating of expressions of vulnerability as a manipulation check. Par-
ticipants rated Echo as making significantly more self-disclosures
in the experimental condition (M = 5.19, SD = 1.59) than the
control condition (M = 2.29, SD = 1.65, c = 18.014,p < 0.001),
as telling significantly more personal stories in the experimen-
tal condition (M = 6.44, SD = 1.06) than the control condition
(M = 1.65, SD = 0.98, c = 116.255,p < 0.001), and as having signif-
icantly more expressions of humor in the experimental condition
(M = 6.22, SD = 1.02) than the control condition (M = 3.61, SD =
2.05, c = 12.171,p < 0.001). These results confirm that participants
correctly perceived Echo’s behavior based on their experiment con-
dition.

5.2 Interaction of Team Members with the
Robot

In order to answer our first research question, addressing the influ-
ence social robot vulnerability has on human team mate behavior
toward the social robot, we investigated participant’s questionnaire
perceptions of Echo and participant behavior expression directed
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Figure 3: We report results on the differences between condition for trust-related behaviors expressed by the participants. (*), (**), and (***)
denote p <= 0.05, p <= 0.01, and p <= 0.001, respectively.

toward Echo during the mistake rounds. From the RoSAS question-
naire, participants rated Echo as having significantly higher warmth
(happy, feeling, social, organic, compassionate, and emotional) in
the experimental condition (M = 6.13, SD = 1.15) than participants
in the control condition (M = 4.95, SD = 1.71, c = 3.273,p < 0.001).

For the behavioral measures, we found that participants who had
made an error looked at Echo after the round concluded more of-
ten in the experimental condition (M = 0.84, SD = 0.37) compared
with participants in the control condition (M = 0.65, SD = 0.48,κ =
0.99, c = 3.412,p = 0.008). Additionally, participants were signifi-
cantly more likely to respond to Echo’s end-of-round comment in
the experimental condition (M = 0.18, SD = 0.39) than the control
condition (M = 0.09, SD = 0.29,κ = 0.96, c = 2.513,p = 0.001).
Examples of participants’ responses to Echo include the following:
“Sure,” “Yeah, that’s true,” and “It’s your fault!” Results of these be-
havioral measures are depicted in Figure 3. These findings show
that increased vulnerability by a social robot increases both the
ratings of warmth of the robot and the engagement of human team-
mates with the robot, demonstrated by both nonverbal and verbal
behavior expressed by the human teammates toward the robot.

To investigate a possible cause for this increased engagement,
we examined participants’ written evaluations of the verbal state-
ments made by Echo and found a distinct difference in participant
responses by condition. Participants in the experimental condition
often noted how Echo eased the tension the groups experienced
and was generally encouraging, saying that Echo’s comments, “felt
kind of artificial [...] but they were able to ease a little tension with the
efforts to make jokes,” “they were positive and helped when we didn’t
succeed,” and “they were funny, and broke the silence many times.”
Participants in the control condition had a slight negative con-
notation with the utterances Echo made, saying Echo’s comments
“constantly told [us] howmany rounds [were] left, howmanymistakes
we made, etc. it really stressed me out” and “sometimes judgmental
when someone would make a mistake, but the statements themselves
were pretty objective and fair.” From these responses, it seems likely
that participants viewed Echo as more approachable and less judg-
mental in the experimental condition versus the control condition.

This approachability of Echo could possibly explain the increased
behavioral engagement we observed with participants interacting
with Echo in the experimental condition.

5.3 Interaction of Team Members with Fellow
Human Team Members

To address our second research question about whether social robot
vulnerability affects human team members’ trust-related interac-
tions with fellow team members, we look into the psychological
safety ratings by team members, the content of team members’
utterances after a mistake has been made, and other verbal expres-
sions of team members (laughing/smiling).

To begin, we did not find any significant difference in the psy-
chological safety survey measure between participants in the ex-
perimental condition (M = 5.62, SD = 0.75) and control condition
(M = 5.53, SD = 0.73, c = 1.117,p = 0.496). This may be because
the Psychological Safety questionnaire was developed for estab-
lished teams in the workplace, and is not as well suited for teams
with low familiarity and experience with one another.

For the behavioral data, we report the results of our statistical
analysis for all of our measures in Table 21. Of all of these behaviors
we investigated, we observed significant differences between condi-
tions for the following trust-related behaviors: explaining a mistake,
consoling a team member, and shared laughing. These results are
depicted in Figure 3. After having made a mistake, participants in
the experimental condition were significantly more likely to ex-
plain their mistake (e.g. “yeah, I can’t do it, I don’t have the right
pieces”) to their team members (M = 0.71) than participants in
the control condition (M = 0.51,κ = 0.98, c = 3.085,p = 0.039).
Additionally, participants in the experimental condition were sig-
nificantly more likely to console their team members (M = 0.20),
saying phrases like, “it’s ok,” than participants in the control condi-
tion (M = 0.13,κ = 0.89, c = 3.085,p = 0.039). Finally, participants
experienced significantly more instances of shared laughing in the

1We disclude the analysis of the variables ‘tension: shifting’ and ‘tension: speech
disturbance’ (Section 4.5.4) from Table 2 due to the infrequency of their expression.
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Mistake Maker Behaviors

Mistake Maker Distress 1.190 0.7610.52 0.48 0.99

xE xC κ c p

Admission of Failure 0.87 0.87 1.00 0.439 0.617

Explaining a Mistake* 0.71 0.51 0.98 3.085 0.039

Apology for a Mistake 0.14 0.14 1.00 1.216 0.657

Non-Mistake Maker Behaviors

Search for Mistake

Blame the Game

Blame the Mistake Maker

Consoling*

Giving Advice

Tension Behaviors

Fidgeting

Individual Smiling

Individual Laughing

Joking

Shared Smiling

Shared Laughing*

0.03 0.06 0.96 0.1490.515

0.06 0.05 0.94 1.309 0.521

0.06 0.12 0.96 0.495 0.172

0.20 0.13 0.89 3.085 0.039

0.03 0.02 0.86 1.917 0.427

0.57 0.53 0.83 1.224 0.448

0.63 0.58 0.73 3.620 0.324

0.27 0.24 0.76 1.594 0.251

0.05 0.05 1.00 1.088 0.847

0.41 0.31 0.98 2.164 0.133

0.31 0.19 0.86 2.335 0.041

Tension Released By Humor Behaviors

0.68 0.65 1.00 0.442 0.179Looking at Human Players

Table 2: For all of the behavioral measures we examined from the
data we show the mean in the experimental condition (xE ), mean
in the control condition (xC ), coefficient (c), p-value, and Cohen’s
kappa (κ). Asterisks (*) by the variable names are used to denote
significant (p < 0.05) variables.

experimental condition (M = 0.31) compared with the control con-
dition (M = 0.19,κ = 0.86, c = 2.335,p = 0.041) after a mistake
was made by one of the participants.

One possible interpretation of these results is that participants
in the experimental condition, as compared with the control condi-
tion, were more likely to make verbal attempts to ease the tension
experienced by the group due to the mistake. There was no signifi-
cant difference reported between the experimental condition and
control condition for the amount of tension present. However, the
responses of team members explaining mistakes, consoling team
members, and shared laughing were more present in the experi-
mental condition than the control condition. Thus, it is possible
that participants in both conditions experienced tension after a
mistake, however, due to the vulnerable statements by Echo, partic-
ipants in the experimental condition were more likely to ease the
tension through explaining the mistake, consoling team members,
and laughing together.

6 DISCUSSION
In this work, we have examined the trust-related behavioral effects
of social robot vulnerability on human members of a human-robot
team. Our results have demonstrated increased engagement toward
the robot and increased trust-related behavior expression (explain-
ing errors, consoling other team members, and shared laughing)
toward fellow team members when the robot in the group makes
vulnerable versus neutral statements.

Barsade’s “Ripple Effect” study demonstrated the ability of an
individual’s positive behavior to influence other individuals in a

group to, in turn, express more positive behavior [2]. In this study
of robot vulnerability, we observe a similar “ripple effect” where
a robot’s vulnerable behavior influenced the expression of trust-
related behaviors expressed by humans in a human-robot team.
The “ripples” of the robot’s vulnerable behavior influences not only
1) team members’ interactions with the robot, but also also 2) team
members’ human-human trust-related interactions with each other.
Human team members expressed more vulnerability in easing the
tension after mistakes by explaining the mistake if they had made
it, consoling fellow team members who did make mistakes, and
laughing together. This increase in trust-related human behavior
displays the distinctive influence social robot vulnerability has on
trust-related team human-human behavior.

Team-based trust and vulnerability not only lead to the easing of
tension through positive social behaviors, but also drive team pro-
ductivity and success. Edmondson’s work on psychological safety
(the belief that an individual can take risks, express vulnerability,
and be listened to without facing social condemnation or judgment)
has shown that learning behavior (e.g. seeking feedback, discussing
errors, and learning from mistakes) mediates the relationship be-
tween team psychological safety and team performance [7]. Thus,
vulnerable behavior expression by robots may likely influence the
performance of a human-robot team in addition to impacting team
member’s trust-related behavior expression during tense situations.
We were not able to explore the effects of vulnerability on team
performance in this study because we fixed team performance to
study team members’ reactions in an equivalent number of tense
scenarios (when mistakes occurred). However, we believe exploring
the effects of robot vulnerability and group trust-related behavior
on team performance will be a fruitful area of future research.

7 CONCLUSION
In this study, we investigated the effects of a robot’s vulnerable be-
havior on trust-related interactions between team members and the
robot as well as team members with fellow human team members
on a human-robot team. We programmed an autonomous robot
to play a collaborative game with a group of three human partici-
pants, where each participant would make mistakes throughout the
game that negatively impacted team performance. We compared
the behavior of group members during these tense moments (when
mistakes are made) between groups with a robot who made vul-
nerable statements versus a robot who made neutral statements.
Participants in the group with a robot who made vulnerable state-
ments engaged to a higher degree with the robot and displayed a
“ripple effect” of the robot’s vulnerable behavior by displaying more
trust-related behaviors with their other human teammates (explain-
ing a mistake, consoling team members, and laughing together).
These results demonstrate the positive influence robots can have
on trust in human-robot teams.
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