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ABSTRACT
Team member inclusion is vital in collaborative teams. In this work,
we explore two strategies to increase the inclusion of human team
members in a human-robot team: 1) giving a person in the group
a specialized role (the ‘robot liaison’) and 2) having the robot ver-
bally support human team members. In a human subjects experi-
ment (N = 26 teams, 78 participants), groups of three participants
completed two rounds of a collaborative task. In round one, two
participants (ingroup) completed a task with a robot in one room,
and one participant (outgroup) completed the same task with a
robot in a different room. In round two, all three participants and
one robot completed a second task in the same room, where one
participant was designated as the robot liaison. During round two,
the robot verbally supported each participant 6 times on average.
Results show that participants with the robot liaison role had a
lower perceived group inclusion than the other group members.
Additionally, when outgroup members were the robot liaison, the
group was less likely to incorporate their ideas into the group’s
final decision. In response to the robot’s supportive utterances, out-
group members, and not ingroup members, showed an increase in
the proportion of time they spent talking to the group. Our results
suggest that specialized roles may hinder human team member
inclusion, whereas supportive robot utterances show promise in
encouraging contributions from individuals who feel excluded.
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Figure 1: Three participants completed a collaborative task
with a Jibo robot, where the robot used two distinct strate-
gies to enhance the inclusion of the human team members.

1 INTRODUCTION
Inclusion is increasingly being recognized as an essential compo-
nent to productive and successful groups and teams [24]. Inclusive
work teams are comprised of members, with diverse perspectives
and skills, who are well trained and given the opportunity to con-
tribute equally in a group [22]. An individual’s inclusion within
a group meets both their needs for uniqueness as well as belong-
ingness [29]. Work teams that have an inclusive environment have
been demonstrated to produce committed teammembers and better-
performing teams [5, 27, 29].

As social robots become members of work teams consisting
of both humans and robots, it is important to consider the possi-
ble influence of the robot on the inclusion of their human team
members. Prior work within the field of human-robot interaction
(HRI) has shown that robots are capable of shaping group dynam-
ics (e.g. group cohesion [30]) and related behaviors (e.g. conflict
management [14, 28], balanced participation [36], and vulnerable
expression [32]). Therefore, it is reasonable to assume that the ac-
tions of a robot could both positively and negatively influence their
human team members’ perceived inclusion. Additionally, if a robot
is able to increase the inclusion of their human team members,
the team is likely to benefit in both the commitment of their team
members and in the team’s overall performance.

In this work, we are interested in investigating two strategies for
enhancing the inclusion of human team members through interac-
tions with a robot in a collaborative task setting. The first strategy
we investigate is giving a member of the team a specialized role,
where only that team member can ask the robot questions related
to the task. Our exploration of a specialized role to interface with a
robot is especially relevant to the HRI community because robots
are commonly incorporated into human-robot teams by training
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one person to operate the robot (e.g. factory teams, search and
rescue teams, surgical teams). The second strategy that we explore
is having the robot give verbal support to human team members,
such as, “Luis, I think that’s worth considering.” We evaluate the
efficacy of these two strategies in a human subjects experiment
where three people and a robot complete a collaborative task. One
of the human team members is given the ‘robot liaison’ role, be-
ing the only one who can ask the robot questions to gather more
task-related information, and all team members receive verbal sup-
port from the robot. We assess the influence of these two inclusion
strategies on human team member inclusion by analyzing partici-
pants’ perceived inclusion ratings, conversational dynamics, and
task decisions made by the group.

2 BACKGROUND
We situate our work within existing HRI research that has demon-
strated a robot’s ability to shape group dynamics and affect. We
also review literature that speaks to the possible efficacy of two
strategies of inclusion we investigate in our experimental study.

2.1 Robots Interacting with Human Groups
In prior HRI work, robots have demonstrated their ability to influ-
ence the dynamics and behavior of human groups. Direct forms of
robot influence in collaborative group tasks, such as moderation
of game play and asking directed questions, have been shown to
shape human perceptions of group cohesion [30] and the team’s
performance [31]. In response to conflict between human members
of a team, robots have been shown to both heighten the team’s
awareness of a conflict [14] and, in a setting with children, success-
fully mediate the conflict [28]. A robot’s vulnerable behavior was
shown to have ‘ripple effects’ in a human-robot group, where the
humanmembers of the group were more likely to exhibit vulnerable
behavior if the robot had also done so [32]. Lastly, a microphone ro-
bot that oriented itself to encourage verbal participation from quiet
members of a group, displayed success in increasing the evenness
of conversational backchanneling between team members [36].

In addition to influencing the dynamics and behavior of group
members, robots have also been shown to shape affect experienced
and expressed within groups. A robot that expressed empathy to-
ward one player in a game was rated as having characteristics
descriptive of a friend [21, 25]. In a game with two human players
and two robot players, the human partners directed their gaze more
often to a relationship-driven robot when they were partners with
it and to a competitive robot when they were opponents with it [23].
In a similar setup with two human and two robot players, people
displayed higher levels of affinity, group identification, and group
trust toward a robot that expressed group-based emotions than
toward a robot that expressed individual-based emotions [7]. Robot
interventions in a variety of settings have also led to positive results
of affect: a robot therapist demonstrated improvements in couples’
intimacy and positive affect [37]; a robot used as a therapy assistive
tool for pediatric oncology patients was shown to relieve stress,
depression, and anger in children [1]; and a robot programmed
to guide the elderly in a walking group positively influenced the
group’s coherence and motivation [10]. Despite the growing body
of work examining a robot’s capability to shape group affect, to our

knowledge no work has yet investigated how robots can influence
the inclusion of a human team member in a human-robot group.

2.2 Strategies to Influence Inclusion
We review related work that investigates inclusion within groups
as well as literature that highlights the potential efficacy of two
strategies of including human team members: giving a member a
specialized role to interact with the robot and supporting human
team members with targeted utterances from the robot.

2.2.1 Inclusion within Groups. Inclusion within human groups has
been researched extensively in psychology, as it relates to the for-
mation of subgroups, otherwise known as intergroup biases. Tajfel
describes group identification in terms of two necessary compo-
nents: a cognitive awareness of membership in that group and an
evaluation of the value of that membership [35]. This awareness of
intergroup membership results in an “us vs. them,” or ingroup vs.
outgroup, mentality, resulting in behaviors that further reinforce
discriminatory ingroup and outgroup relationships [2]. Dunham
et al. show that “mere membership” in randomly selected groups
result in ingroup-favoring and outgroup-opposing behaviors in
people even as young as 5 years old [8].

2.2.2 Strategy 1: Specialized Roles in Groups. If given a special-
ized role to interact with a robot in the context of a human-robot
team, it is possible that the role might give a sense of value to the
team member, enabling them to contribute uniquely to the group.
However, it is also possible that the role might further isolate them
from the group. A person’s perception of their isolation or inclusion
within a group is often determined by the existence and perception
of ingroups and outgroups and where one stands in relation to the
rest of the members. Faultlines, divisions in a group along a salient
characteristic (e.g. age, gender), may determine how these ingroup
and outgroup relationships are formed [19]. A faultline could be
created by giving a member a leadership role or another similarly
specialized role. The research on the relationship between leader-
ship and isolation suggests that giving a member a specialized role
in the group may lead to feelings of exclusion [26]. The relationship
between inclusion and specialized roles in human teams has been
studied extensively; however, to our knowledge, no research has
been conducted on how specialized roles impact perceptions of
inclusion in human-robot teams.

Research Question 1: How does being given a specialized role to
interact with a robot influence a human team member’s inclusion
in a human-robot team?

2.2.3 Strategy 2: Verbal Support. Teams with high levels of in-
clusion consist of members who “feel their values and norms are
supported” [5]. Support within teams may encompass encouraging
ideas, acknowledging accomplishments, providing assistance, or
simply backchanneling [11]. Backchanneling, one form of verbal
support that has been researched extensively, has been defined as
“the short utterances produced by one participant in a conversation
while the other is talking” [38]. Many consider backchanneling to
include nonverbal signals as well, including nodding, facial expres-
sions, and directional gaze [33]. All feedback responses, regardless
of form, serve the same function of confirming that the “speaker
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Figure 2: In round 1 of the experiment, two participants (ingroup) and a Jibo robot completed a task in room A while one
participant (outgroup) and a Jibo robot completed the same task in room B. The outgroup participant joined the two ingroup
participants and the robot in roomA for round 2 of the experiment, where one of the members is designated the robot liaison.

and listener share a common frame of reference” without threat-
ening the speaker’s position as primary speaker [33]. And though
responsive feedback may not always be positive or supportive, re-
search has shown that unsupportive verbal feedback does not occur
frequently [33]. Given the engaging and communicative nature of
backchanneling as well as the importance of team members sup-
port, we have reason to believe that supportive utterances from
a robot may influence the inclusion of human team members. Al-
though work within HRI has demonstrated the efficacy of robot
backchanneling to communicate that the robot is attentively listen-
ing [20], no work to our knowledge has investigated the influence
of supportive utterances on human inclusion within groups.

Research Question 2: How do supportive utterances from a robot
influence a human team member’s inclusion in a human-robot team?

3 METHODS
In this section, we describe a human subjects experiment investi-
gating the influence of a specialized role involving interaction with
a robot and the influence of supportive utterances on the inclusion
of human members within a human-robot team.

3.1 Experiment Design
We designed a between-subjects experiment where three human
participants and a robot work together on a collaborative task. To
study the influence of the robot on participants who may experi-
ence exclusion, we attempted to artificially form an ingroup and
outgroup within the three participants. We did this by having par-
ticipants first complete round one of the task independently within
assigned subgroups of sizes one (the outgroup member) and two
(the ingroup members), and then gathered them as a team to
complete a second round, see Figure 2. During round two, we stud-
ied the influence of a specialized role by assigning one of the three
human participants as the robot liaison, the sole human member
with the ability to ask the robot information. These designations of
human participants led to our two between-subjects conditions:

• Condition A: the robot liaison is an ingroup member
• Condition B: the robot liaison is an outgroup member

Using this experimental design, we addressed our two research
questions described in Section 2. For our first research question, we
investigated the influence of a specialized role to interact with a

robot by examining the difference in inclusion and related behaviors
of both ingroup and outgroup participants with the robot liaison
role. For our second research question, regardless of condition and
robot liaison designation, the robot targeted each participant in
the group with supportive utterances (Section 3.3). We are able to
measure each participant’s reactions to these supportive utterances
from the robot and other measures of inclusion, and investigate if
the ingroup-outgroup or robot liaison designations influence the
effect of the robot’s supportive utterances.

3.2 Collaborative Task: The Survival Problem
For this experiment, we designed a collaborative task where we
asked players to assign ranks to items from a given list based on how
useful each item would be for survival in a hostile environment.
This task is a derivative of the Desert Survival Problem [18], a
commonly used task in HRI groups research [4, 17, 36].

In the first round of the task, players were given 15 minutes to
construct an ordered list of items, ranked by importance for survival,
from a list of 25 common household items (e.g. umbrella, whistle,
watch). During this round, players interacted with a social robot
through verbal queries about the time remaining in the round and
to learn more information about the survival items. For example,
when queried about the survival item ‘soda,’ the robot responded
with “6 aluminum cans of Coca-Cola. The cans are held in cardboard
and the whole pack is wrapped in plastic.”

In the second round of the task, the team was given 30 minutes
to agree on a final list of eight items from the original list of 25 that
they deemed to be the most essential for survival. In addition to the
information in the first round, the robot also provided additional
facts regarding various environmental factors such as the weather,
plants, or geography, for example: “Life threatening temperature
is rare, but does occur. Make sure you save up supplies to survive a
3-day long blizzard.” This allowed us to provide participants with
additional material for further group discussion and encouraged
questioning of prior assumptions.

3.3 Robot Platform and Behaviors
For our experiment, we used the commercial robot Jibo [12]. Jibo
is 11 inches tall and has a 3-axis motor system and a touchscreen
face. Jibo responded to the verbal utterances of participants, cap-
tured through individual headset microphones and converted from



Table 1: Examples of the targeted supportive utterances the
robot made during the experiment, where [p-name] is a
placeholder for the participant’s name.

Targeted Supportive Utterance Example Type

“Okay, [p-name].”
simple

“Interesting, [p-name].”

“Camera. [p-name], I think that's worth considering.”
item

“Soda, chocolate, that makes sense [p-name].”

“We need a coffee pot. Good idea [p-name].”

“Use garbage bag to store the berries. Okay [p-name].”
rephrase

a speech signal to text using Google’s speech-to-text API. We pro-
grammed Jibo to play the role of a social robot that engages in
various forms of supportive social behaviors while providing as-
sistance to players through the supply of valuable task-related
information, described in Section 3.2.

In response to participants’ speech, we designed the robot to
display general social behaviors to establish itself as a present
and active member of the human-robot team. In both rounds of
the experiment, the robot nodded with a probability of 0.25 in
response to detected speech. The robot also responded verbally to
detected speech with a probability of 0.15 during both rounds of
the experiment: if an item name is detected within the participants’
utterance, then with a probability of 0.5, the robot’s verbal response
either gave a useful hint about the item (e.g. “Whiskey is a great
disinfectant” ), or made a general comment using the item(s)’s name
(e.g. “Screwdriver, interesting”, “Honey, tape, okay” ). If no items were
detected in the participants’ utterance, the robot’s verbal response
consisted of a generic verbal backchannel (e.g. “Uh huh”, “Yeah” ).

During round two of the experiment, we designed the robot
to deliver targeted supportive utterances. These targeted sup-
portive utterances reinforce the ideas of participants and also use
the participant’s name (robots using participant names has shown
importance in building relationships and engaging people [15, 16]).
In the experiment, the robot responded with targeted supportive
utterances that either 1) rephrased and supported an idea proposed
by a participant (rephrase), 2) supported an item that a participant
mentioned (item), or 3) simply showed support to the participant
themselves (simple). Examples of the three types of targeted sup-
portive utterances are shown in Table 1. Of the targeted supportive
utterances the robot produced during the experiment, 29% were
rephrase, 34% were item, and 37% were simple. We programmed the
robot to deliver one targeted supportive utterance to each human
participant every 4.5 minutes during round two of the experiment.
This resulted in participants receiving an average of 5.62 (SD = 0.86)
targeted supportive utterances each throughout the course of the
experiment.

3.4 Procedure
Upon arrival of the participants, an experimenter obtained informed
consent and then asked participants to independently fill out a
pre-experiment questionnaire. Then, the experimenter informed
participants that they would complete a two-part timed activity, to
be completed in randomly divided subgroups of sizes one and two,

before completing part two as a group of three. The experimenter
first set up the single participant (outgroup) in room B. During
the approximately 5 minutes the experimenter was setting up the
outgroup participant, the participants of the two-member group
(the insiders) were given a list of “get to know you” questions in
order to further enforce the ingroup-outgroup divide (e.g. “If you
didn’t sleep, what would you do with your extra time?”), before the
experimenter returned to lead the ingroup participants to room A.

In both rooms, the experimenter asked the participants to put
on the headsets at their pre-assigned seats. The experimenter then
played Jibo’s introduction through the tablet, and had each partici-
pant practice successfully querying Jibo about one of the survival
items. The experimenter then initiated round one of the task on the
tablet, which lasted 15 minutes, and left the room.

After the participants finished the first round, the experimenter
escorted the outgroup participant to room A to join the ingroup
participants. The experimenter then initiated round two of the task
on the tablet (which lasted 30 minutes), played Jibo’s introduction
to the round, and designated one of the participants as the robot
liaison using the following language: “In this part, unlike the first,
only one of you will be able to ask Jibo questions about the items and
environment. For all of you this is [participant name].”

After the task finished, the experimenter led the participants out-
side of the experiment room and administered the post-experiment
questionnaire. Finally, participants received a $10 cash payment.

3.5 Measures
To evaluate how the robot liaison role and the robot’s targeted
supportive utterances influenced participant inclusion, we analyzed
participants’ responses to pre- and post-experiment questionnaires,
rankings of survival items in both rounds of the experiment, and
conversational behavior.

3.5.1 Pre-experiment survey measures. In order to capture pre-
existing differences between participants, we collected measures of
prior familiarity with team members and two personality measures
via a survey administered before the human-robot interaction.

Prior familiarity with team members was assessed by asking
participants to evaluate their relationships with each of the two
participants on a scale from 1 (I have not met this participant before
we completed this study together; I do not know them) to 5 (I would
consider this participant to be one of my closest friends). Participants
were also asked whether they had the phone numbers or social
media contact information of their team members.

We also assessed participants’ extraversion and emotional in-
telligence. We measured participants’ extraversion because it is a
necessary covariate when analyzing data pertaining to the amount
of time people spend talking in the group (Section 3.5.3). We mea-
sured participants’ emotional intelligence because prior work has
demonstrated its correlation with team performance [34].

To measure extraversion, we used an abbreviated version of
the Revised Eysenck Personality Questionnaire (EPQR-A) [9] that
includes six binary (0 - no, 1 - yes) response questions such as
“Do you tend to keep in the background on social occasions?” to
construct a single score between 0 (low extraversion) to 6 (high
extraversion). To measure emotional intelligence, we administered
the Short Form of the Trait Emotional Intelligence Questionnaire



(TEIQue-SF) [6], which asks respondents to indicate how much
they agree or disagree with a set of 30 statements, such as “I’m
usually able to influence the way other people feel”, on a 7-point
Likert scale from 1 (Strongly Disagree) to 7 (Strongly Agree).

3.5.2 Survival item ranking measures. We examined how similar
each of the two subgroup’s lists were to the final list of eight items
by calculating the absolute difference between the team’s final
ranking of eight most important items, rf in (i), from round two,
and the ranks initially assigned to these items, rinit (i), by each
subgroup in round one, Diff =

∑rf in
i=1 abs

(
rf in (i) − rinit (i)

)
. We

normalize the difference scores between the ingroup and outgroup
to get our similarity score, e.g. for the outgroup Diffout = Diffout /
(Diffin + Diffout ).

We also analyzed how each item on the final list of eight items
was initially ranked by each subgroup as either high (ranked 1-8)
or low (ranked 9-25), and computed the proportion of those items
that made it onto the final list of eight items.

3.5.3 Conversational measures. We investigated several aspects of
the conversation that occured between the three participants during
the second round of the experiment: each participant’s total time
spent talking, the standard deviation of the total talking times of
each of the three participants in the group, the number of times each
item was mentioned, and the proportion of time participants spent
talking in response to the robot’s targeted supportive utterances.

3.5.4 Post-experiment survey measures. In the post-experiment
questionnaire we assessed participants’ perceived inclusion by ad-
ministering the Perceived Group Inclusion Scale (PGIS) [13]. PGIS
asks participants to rate agreement with statements like “this group
gives me the feeling that I belong” and “this group encourages me
to be authentic” on a scale from 1 (Strongly Agree) to 5 (Strongly
Disagree). To measure participants’ perceptions of Jibo, we used
the Robotic Social Attributes Scale (RoSAS) [3]. RoSAS asks re-
spondents to rate how closely they consider descriptor words, each
representative of either warmth, competence, or discomfort, to be
associated with the robot on a scale from 1 (Definitely Not Associ-
ated) to 9 (Definitely Associated).

The post-experiment questionnaire also contained several long-
response questions asking participants to describe the team’s in-
teractions on the survival task and the question “Of the two other
human participants, which participant would you prefer to work
with on a school or work project?” From the responses to this last
question, we assigned each participant a preference score. If partici-
pant A and participant C specified participant B as their preference,
participant B’s preference score would be 2 (one for each partici-
pant that ‘voted’ for them). If a participant indicated that they were
fine working with both the other participants, each of the other
participants received a score increase of 1.0. If a participant said
they would prefer working with neither of the other participants,
neither of the other participants received any score increase.

3.6 Participants
Participants were recruited for this study from a high school pro-
gram held at Yale University. The students from the program came
from 80 different countries, with 46.66% from the United States. The

breakdown by continent is: 52.33% from North America, 24.27%
fromAsia, 11.34% fromAfrica, 6.84% from Europe, 3.20% from South
America, and 2.03% from Australia.

A total of 30 groups (90 participants) were recruited for partic-
ipation in this study. Of the 30 groups recruited, 4 groups were
excluded due to either not finishing the experimental task or tech-
nical difficulties (e.g. a participant’s microphone got disconnected
disabling them from querying the robot). For the 26 remaining
groups (78 participants), 38 participants were female and 40 par-
ticipants were male. The average age of participants was 16.82
(SD = 0.72). There were 6 all female groups, 4 all male groups, 4
groups with 2 females and 1 male, and 12 groups with 1 female and
2 males. For the 16 groups with mixed-gender compositions, we
balanced by gender the designation of both the outgroup member
(9 females, 7 males) and the robot liaison (8 females, 8 males). There
were 13 groups with an ingroup robot liaison and 13 groups with
an outgroup robot liaison.

Participants’ familiaritywith the other participants in their group
(M = 1.10, SD = 1.06), extraversion (M = 3.90, SD = 2.15), and
emotional intelligence (M = 5.27, SD = 0.65) were assessed in the
pre-experiment questionnaire. Using mutli-level mixed effects mod-
els described in Section 4, we did not find any significant differences
of these characteristics between either participant designations of
robot liaison or participant designations of ingroup-outgroup.

4 RESULTS
For our analysis of the participant data, we used linear mixed-effects
models in order to account for each participant being in a group of
three. We designated intergroup bias (ingroup or outgroup), robot
liaison designation (yes or no), the interaction between those two
variables, and relevant covariates as fixed effects; and the partici-
pant’s group as a random effect (random intercept). We tested these
models for multicollinearity (variance inflation factor), selected
them based on the Bayesian information criterion, and evaluated
residual errors for lack of trends and heteroscedasticity. For each
fixed effect, the model outputs the linear coefficient (c), the standard
error (SE), and the significance (p) value of that predictor.

When analyzing data for each group, we used an analysis of
variance (ANOVA) where each group is an independent sample.
The main independent variable of interest is whether the robot
liaison is an ingroup member or an outgroup member. We used
the following covariates in this analysis: the average familiarity of
group members and the number of females in the group. The effect
size is reported as partial eta squared (η2).

4.1 Ingroup-Outgroup Differences
Based on our experimental design that introduced an intergroup
bias where one participant (outgroup) completed round one sepa-
rately from the two other participants (ingroup), we expected that
there would be inclusion-related differences between ingroup and
outgroup participants. We observed this bias in the similarity of
ingroup and outgroup survival item rankings from round one with
the final list the team produced after round two, as well as in the
post-experiment preferred partner scores.

We analyzed the similarity of the final list of 8 items with both
the ingroup and outgroup’s initial ranking of those 8 items, where
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smaller values indicate higher similarity of the lists. We used a
linear mixed-effects model that best fit the data with emotional
intelligence (c = −0.05, SE = 0.02,p = 0.023) as a covariate. We
found that ingroup members had a more similar ranking of the top
8 items on their initial list (M = 0.45, SD = 0.11) than outgroup
members (M = 0.55, SD = 0.11, c = 0.10, SE = 0.04,p = 0.005).

We also examined partner preference scores, our measure of
how much a participant is preferred as a teammate by their fel-
low participants. We analyzed the partner preference scores us-
ing a linear mixed-effects model that best fit the data, with age
(c = 0.21, SE = 0.11,p = 0.055) and emotional intelligence (c =
0.44, SE = 0.12,p < 0.001) as covariates. We discovered that
ingroup participants had significantly higher partner preference
scores (M = 1.08, SD = 0.73) than outgroup participants (M =
0.80, SD = 0.56, c = −0.51, SE = 0.21,p = 0.019).

These ingroup-outgroup differences support our experimental
design of imposing intergroup biases among the three participants.
The ingroup’s higher similarity between the initial and final item
rankings and the higher preference for ingroup members as work
partners serve as a manipulation check.

4.2 Influence of the Robot Liaison Role
In order to investigate the influence of the robot liaison role on par-
ticipant inclusion (Research Question 1), we analyzed the perceived
group inclusion survey measure as well as the measures of which
survival items were included on the team’s final list of eight items.

For our analysis of the participants’ ratings on the perceived
group inclusion scale, the linear mixed-effects model that best fit the
data used the covariates of age (c = −0.20, SE = 0.09,p = 0.025) and
maximum familiarity (c = 0.12, SE = 0.05,p = 0.011). We found
that participants who were the robot liaison had lower ratings of
perceived group inclusion (M = 4.08, SD = 0.78) than the other
group members (M = 4.35, SD = 0.49, c = −0.41, SE = 0.17,p =
0.021), as shown in Figure 3.

In order to analyze the influence of the robot liaison and the
ingroup-outgroup designations, we examined the items initially
ranked high (items ranked 1-8) and low (items ranked 9-25) by

Table 2: Proportion of survival items that were initially
ranked high and low by the ingroup (Hin ,Lin ) and outgroup
(Hout ,Lout ) that made it onto the group’s final list of 8 items.

Hin, Hout

robot
liaison

robot
liaison

Ingroup Robot Liaison Outgroup Robot Liaison

0.71 (2.0/2.8 items) 0.79 (2.6/3.2 items)

0.42 (2.1/5.2 items) 0.40 (2.1/4.8 items)Hin, Lout

Lin, Hout

Lin, Lout

0.47 (2.4/5.2 items) 0.32 (1.5/4.7 items)

0.14 (1.5/11.8 items) 0.15 (1.8/12.3 items)

each of the 2 subgroups in round one of the experiment. We then
calculated the proportion of these items that made it onto the final
list of 8 items produced by the entire team at the end of round two
of the experiment (see Table 2). We found that a higher proportion
of items were chosen that were initially low on the ingroup list and
initially high on the outgroup list (Lin ,Hout ) if the robot liaison was
an ingroup member (M = 0.47, SD = 0.14) than if the robot liaison
was an outgroup member (M = 0.32, SD = 0.18, F = 5.59,η2 =
0.19,p = 0.027). Thus, when the outgroup member is the robot
liaison, as opposed to an ingroup member, the team is less likely to
incorporate items favored by the outgroup member.

These findings suggest that the robot liaison role works against
efforts to increase inclusion in human team members, resulting in
decreased perceived inclusion in the robot liaisons and the incorpo-
ration of fewer of the outgroup robot liaison’s ideas into the team’s
final list of items. When asked in the post-experiment questionnaire
if the status of any group member influenced the group dynamic,
most participants did not think so (e.g. “No, although only one could
speak to Jibo, we all contributed to the decisions equally” ). However
a few participants did express a difference in group member sta-
tus (e.g. “I think that since I was the only one allowed to ask Jibo
questions it made me more dominant” and “other group members
had to ask [participant name] to ask Jibo questions” ). From these
responses, it seems that participants did not overwhelmingly feel a
difference in group inclusion or membership because of the robot
liaison status. However, some participants did point to a noticeable
difference in the power dynamics where the robot liaison was seen
as having greater influence than the other members. This could help
explain the robot liaison’s lower perceived inclusion and, when
they were an outgroup member, their reduced likelihood of the
group incorporating their ideas.

4.3 Influence of the Robot’s Supportive
Utterances

To investigate the influence of the robot’s supportive utterances
(Research Question 2), we examined participants’ verbal responses
to the robot’s targeted supportive utterances. In this analysis, we
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Figure 4: Outgroup participants, as opposed to ingroup par-
ticipants, displayed a significantly higher difference in the
proportion of time they spent talking during the oneminute
after the robot’s support targeted to the participant (RST-
P) when compared with two baselines: 1) the proportion of
time they spent talking during the one minute after the ro-
bot support was targeted to someone else (RST-SE) and 2)
the proportion of time they spent talking during the the one
minute after a robot undirected utterance (RUU). Error bars
represent a 95% confidence interval.

excluded four participants’ data because they did not comply in
keeping their microphone on during the experiment. We compared
the proportion of time a participant spent talking 1 minute after
the robot delivered a targeted supportive utterance (robot support
targeted to participant - RST-P) with two controls: 1) the proportion
of time a participant spent talking 1 minute after the robot delivered
a targeted supportive utterance to someone else (robot support
targeted to someone else - RST-SE) and 2) the proportion of time a
participant spent talking 1 minute after an undirected utterance
from the robot (robot undirected utterance - RUU ). As shown in
Figure 4(a), ingroup and outgroup participants did not display a
significant difference in their proportions of time talking in the
1 minute after robot targeted support to the participant, RST-P,

(c = 0.01, SE = 0.03,p = 0.703), in the 1 minute after robot targeted
support to someone else, RST-SE, (c = −0.03, SE = 0.03,p = 0.445),
or in the 1 minute after robot undirected utterances, RUU, (c =
−0.03, SE = 0.03,p = 0.263). These analyses were conducted with
linear-mixed effects models that best fit the data with extraversion
(RST-P: c = 0.02, SE = 0.01,p = 0.004; RST-SE: c = 0.02, SE =
0.01,p = 0.007; RUU: c = 0.02, SE = 0.01,p = 0.002) as a covariate.

We then examined the difference between each participant’s pro-
portion of time talking in the 1 minute after robot targeted support
to the participant, RST-P, and our two controls (RTS-SE and RUU),
Figure 4(b). The linear mixed-effects models that best fit the data
for these two analyses did not use any covariates. When examining
the difference in participants’ talking after the robot gave targeted
support to them as opposed to after the robot targeted support to
someone else (RST-P − RST-SE), we found that outgroup members
(M = 0.012, SD = 0.041) had a more positive difference than in-
group members (M = −0.022, SD = 0.055, c = 0.03, SE = 0.02,p =
0.047), indicating that ougroup members had a higher verbal re-
sponse to the robot targeted support. In analyzing the difference
in participants’ talking after robot gave targeted support to them
as opposed to after undirected robot utterances (RST-P − RUU),
we found that outgroup members (M = 0.019, SD = 0.041) had a
more positive difference than ingroup members (M = −0.015, SD =
0.049, c = 0.04, SE = 0.02,p = 0.007) again indicating that ougroup
members had a higher verbal response to the robot targeted support.
These results suggest that the robot’s supportive utterances pos-
itively influenced outgroup, but not ingroup, participants’ verbal
contributions during the task.

In the same analyses described in the prior paragraph, we also
found differences between robot liaison participants and the other
participants. When examining the difference in participants’ talking
after the robot gave targeted support to them as opposed to after the
robot targeted support to someone else (RST-P − RST-SE), we found
that robot liaisons (M = 0.011, SD = 0.046) had a more positive
difference than other group members (M = −0.022, SD = 0.053,
c = 0.03, SE = 0.02,p = 0.044). However, in the difference in
participants’ talking after robot gave targeted support to them as
opposed to after undirected robot utterances (RST-P − RUU), the ro-
bot liaison designation had no significant influence (c = 0.02, SE =
0.02,p = 0.274). Since the increased proportion robot liaison talking
time following robot targeted support is only supported by one of
our baseline comparisons, it is possible that the robot liaisons have
a similar boost in talking in response to robot targeted support as
outgroup members, but the effect may not be as pronounced.

4.4 Perceptions of the Robot
We evaluated participants’ perceptions of the robot by analyzing
their responses to the Robotic Social Attributes Scale (RoSAS). Using
linear mixed effects models, neither the ingroup-outgroup, robot
liaison designations, nor the interaction between the two resulted
in significant differences in participants’ perceptions of the robot’s
warmth, competence, or discomfort. Across all participants, the
average ratings of the robot’s RoSAS attributes, rated on a 1-9 Likert
scale, are as follows: warmth (M = 5.81, SD = 1.45), competence
(M = 7.21, 1.24), and discomfort (M = 2.19, SD = 1.10).



5 DISCUSSION AND CONCLUSION
In this study, we investigated two different ways in which robot
team members can shape inclusion: 1) through a specialized role
that gave one participant increased interaction with a robot and
2) through supportive utterances by the robot, targeted to each
participant. To investigate the efficacy of these two strategies for
increasing inclusion, we designed an experiment in which human-
robot groups with experimentally manipulated ingroup-outgroup
divides must work together as teams in a collaborative task.

Wewere able to confirm that our ingroup-outgroupmanipulation
was successful. On average, each team’s final item rankings were
more similar to the initial item rankings made by ingroup members
than those made by outgroup members. Moreover, ingroup par-
ticipants were on average preferred as future work partners over
outgroup participants by the other members of the team. Beyond
our success in experimentally creating these subgroup divides in
this specific study, we contribute to the field of HRI an experimental
study design that enables researchers to investigate inclusion and
ingroup-outgroup divides in future work.

To explore the influence of a specialized role on team member
inclusion, we designated one member of the team the ‘robot liaison’
that allowed this participant to have privileged communications
with the robot. On the one hand, this designation could have pro-
moted team inclusion by providing a sense of value to the team
member with the specialized skill. On the other hand, this could
have further isolated the member through the addition of another
dividing feature with the other members of the group. Our results
showed stronger support for this second idea. Participants assigned
to the role of the robot liaison reported lower levels of group inclu-
sion than other teammembers, demonstrating the possible isolating
effects of the role. It is possible that the introduction of a robot with
exclusive access produces a change in the power dynamics of the
team, particularly when the robot plays an essential role. Prior work
has established a link between leadership and feelings of isolation
and loneliness [26]. Although the robot liaison in this experiment
is not explicitly in a leadership position, the increased influence
given to the robot liaison could have produced their lower perceived
inclusion ratings.

This divide was particularly apparent when the robot liaison was
an outgroup member. When an outgroup member was the robot
liaison, as opposed to an ingroup member, the group as a whole
incorporated fewer survival items favored by the outgroup member.
It is likely that giving the robot liaison role to the outgroup mem-
ber created another divide between the outgroup member and the
ingroup members. This increased division may have made the in-
group members less receptive to the ideas of the outgroup member.
This result highlights the dangers of having an already-excluded
member of a team take on a specialized role, as the outgroup par-
ticipants in this study had less of their ideas incorporated into the
team’s final decision when they were given a specialized role to
interact with the robot member of the team.

These findings have important implications for the increasingly
prevalent number of human-robot teams today, as robot members
are frequently incorporated with a human “liaison.” These liaisons
may be a specialized robot operator, such as in factory, search and
rescue, and surgical teams, or simply a member with more implicit

control of the robot, such as team leaders or remote members par-
ticipating through telepresence. However, as we have shown, this
practice can be detrimental to the perceived inclusion of the liaisons
themselves, especially if there are already pre-existing faultlines
between the liaison and the other members.

In order to investigate our second proposed strategy for increas-
ing team member inclusion, we programmed the robot to make
targeted supportive utterances during team discussions. We found
that whereas ingroup members appeared to be mostly unaffected by
these supportive utterances, outgroup members of the team spoke
more in the time immediately after receiving one of the robot’s
targeted supportive utterances as compared to the times after other
utterances made by the robot. Thus, we found evidence for robot-
employed targeted supportive utterances improving team inclusion
and contribution by providing support and affirmation to relatively
excluded team members.

Overall, our results demonstrate that the roles and actions of a
robot team member can influence overall team inclusion. We note
that two factors, sample representativeness and robot utterance
delivery, may have had a non-trivial impact on our results. First,
because we recruited participants from a relatively small two week
high school program, it is possible that our teams had higher base-
line levels of inclusion and common ground, and thus were also less
affected by our ingroup-outgroup manipulation. Second, because
we implemented relatively simple robot behaviors, the robot would
occasionally produce poorly timed or irrelevant utterances (e.g. a
robot response of “key, good idea” after a participant had said “I don’t
think we should bring the key”). Because these two factors may have
reduced the effectiveness of our experimental manipulations, either
by raising the initial level of team inclusion or by minimizing the
beneficial influence of the robot, we believe that the significance of
our results in spite of these factors highlights the potential impact
of robot team members, and thus the importance of considering
the possible consequences of including robot members in teams.

A vast majority of teams consist of members with diverse skill
sets, backgrounds, and experience. Inclusion is a critical component
to both the success of the team and the commitment of its members
[5, 27, 29]. In line with prior work in HRI, we have demonstrated
that the social dynamics and behaviors of groups can be shaped by
the actions of a robot member. However, we found that these effects
are not necessarily always in a positive direction. The results of our
experiment show that whereas the actions of robots can be used
to promote a sense of team inclusion, the mere presence of robots
within a team may produce faultlines and isolate team members
if differential abilities to interact with the robot are introduced.
As robots are increasingly incorporated into human teams, we
recommend that we, as a community, work to better understand
and take into account the influence robot members can have on
inclusion and other social dynamics of the team, as we seek to
promote the success of human-robot teams.
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