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Abstract—Reinforcement learning (RL) is a powerful learning 
technique in robotics, where people can specify rewards that 
robots learn how to maximize through a process of trial-and-
error. Despite the numerous advantages of RL to robot program-
ming, no approaches to our knowledge have sought to enable non-
technical users to specify RL programs for robots. In this work, 
we designed two novel RL-based robot programming paradigms 
for non-technical users: Full MDP Programming (Full-MDP) 
and Goal-Only MDP Programming (Goal-MDP). To evaluate the 
efficacy of these two approaches, we ran a between-subjects 
online user study (N = 409) where participants were asked 
to program a simulated robot to complete example household 
tasks (e.g., delivering coffee) using one of our RL programming 
paradigms or a commonly used baseline: Sequential Programming 
(Seq), or Trigger-Action Programming (TAP). While users neither 
performed well nor reported positive experiences with the Full-
MDP interface, user performance and experience with Goal-MDP 
was similar to the baselines (Seq and TAP) with significantly 
shorter programs. These results demonstrate that RL-based 
paradigms like Goal-MDP are a viable alternative to more 
traditional approaches and provide a starting point for robot 
programming interfaces that allow end-users to leverage the 
myriad benefits of RL for programming robots. 

Index Terms—End-User Robot Programming, Reinforcement 
Learning, Human-Robot Interaction 

I. INTRODUCTION 

Robots have the potential to improve the lives of a broad 
range of people, serving as tutors to elementary school chil-
dren [1]–[4], providing care to older adults [5]–[8], delivering 
supplies [9]–[11], and helping with household tasks [12]–[14]. 
In these settings, it is essential that users can directly program 
robots to meet their needs, adhere to their preferences, and 
customize their behavior to the user’s specific context. 

Various existing methods let end users customize robot 
behavior [15]–[25]. However, to our knowledge no current 
methods allow for learning-based approaches where a robot 
discovers how to satisfy user preferences through either plan-
ning or an empirical process based on information specified by 
end users, such as reinforcement learning (RL). In traditional 
uses of RL [26], an expert would specify a Markov decision 
process (MDP) representing an environment with an agent 

* Tewodros W. Ayalew and Jennifer Wang contributed equally to this paper. 

(e.g., robot) in it. The agent would use this specification 
algorithmically through exploration and/or optimization to 
learn a policy specifying what actions the robot should take. 

In this work, we introduce the notion of enabling non-
technical end users to specify the most important parts of an 
MDP via a visual programming approach suitable for novices, 
leveraging RL to learn the actions their robot should take based 
on these specifications. Such an approach could have several 
benefits. Rather than specifying a long list of actions for robots 
to execute in sequence, RL could enable users to focus solely 
on specifying desired outcomes. Additionally, the robot could 
use a reinforcement-learning approach to determine the most 
effective plan of action to accomplish the goal. This kind of 
specification may take less time for the user and enable the 
robot to determine a more effective solution. 

We designed and implemented two novel end-user in-
terfaces where users specify MDPs. The first is the Full 
MDP Programming (Full-MDP) user interface, where an end 
user specifies the main components of an MDP: the goal(s) 
(rewards) they want the robot to achieve, possible behaviors 
(actions) for the robot to try, and key attributes (states) of the 
environment. We also designed a second novel interface Goal-
Only MDP Programming (Goal-MDP), in which the end user 
only specifies the robot’s goals, and all states and actions 
are automatically included to compute the robot’s policy. We 
automatically translate the user’s specification to a traditional 
MDP and use a reinforcement learning approach to determine 
the most effective policy for the robot to accomplish the goal. 

To gauge whether our novel end-user RL approach was suc-
cessful and to understand its specific pros and cons compared 
to traditional end-user programming techniques for robots, we 
sought to answer the following research questions: 

• RQ1: Using an RL end-user paradigm for programming 
a robot, (a) can users successfully author programs and 
(b) do they report a positive user experience? 

• RQ2: How do RL end-user robot programming 
paradigms compare with traditional approaches in 
(a) user’s ability to author correct programs, (b) the time 
required, (c) program length, and (d) user experience? 
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• RQ3: How do RL end-user robot programming 
paradigms compare with traditional approaches based on 
specific features of the programming task (e.g., handling 
repetitive actions, uncertain initial conditions)? 

We answered these research questions via a between-
subjects online study in which 409 participants were asked to 
program a simulated robot to complete a variety of household 
tasks (e.g., delivering coffee) using a randomly assigned pro-
gramming paradigm. In addition to our Full-MDP and Goal-
MDP paradigms, we also implemented and tested two baseline 
paradigms: Sequential Programming (Seq), commonly used 
for visual end-user programming in robotics, and Trigger-
Action Programming (TAP), a common approach in other 
domains (e.g., smart homes), though less common in robotics. 

II. RELATED WORK 

A. End-User Robot Programming 

To enable a broad range of end users to customize robots, 
researchers have developed a variety of end-user programming 
paradigms [15]. Visual programming, in which users manipu-
late their graphical representation, is common. These graphical 
representations include behavior trees [27]–[29], blocks [23], 
[30], [31], and icons [25], [32]. These interfaces often include 
elements like buttons, sliders, and input forms [33]–[36]. 

Researchers have explored several other approaches. Robot 
learning from demonstration (LfD), also known as imitation 
learning, can teach robots skills without the need for end 
users to explicitly program them [37]–[41] and can also 
be incorporated into explicit robot programs to simplify the 
specification of more complex behaviors [19], [23], [42]. 
Augmented reality (AR) and mixed reality (MR) interfaces 
enable users to minimize context switching by embedding into 
their environment an interface supporting gestures, touch, and 
direct interaction [16]–[18], [43]. Speech and natural language 
are sometimes incorporated into end-user robot programming, 
most often in combination with other modalities [18], [22], 
[44]–[46]. Finally, tangible programming involves the physical 
manipulation of real-world objects [24], [25], [32], [47], [48] 
and is most often designed for use by children [25], [32]. 

This work focuses on situations where a user can specify 
an entire program for tasks that robots complete in everyday 
environments (e.g., the home). Given its past successes in 
enabling users to author complete robot programs, we selected 
a block-based visual programming end-user interface. 

B. Sequential Programming 

We define Sequential Programming as a programming 
approach where users specify step-by-step instructions for 
execution (i.e., imperative programming). The most common 
form of sequential programming for non-technical end-users 
in both robotics and non-robotics contexts are block-based 
programming interfaces where users drag and drop blocks rep-
resenting program instructions that are executed in sequence. 
These block-based sequential programming interfaces are the 
most widely recognized and successful interfaces for non-
technical users [15], [31], [49], [50]. In robotics, end users 

have successfully used block-based sequential programming 
interfaces to author robot programs that pick and place objects 
in industrial settings [31], [51], deliver items to rooms in 
hotels [49], grasp items in everyday environments [23], and 
express emotions through sound and movement [30]. Block-
based sequential interfaces are also commonly used to teach 
children how to program robots (e.g., Dash, Cozmo, Sphero). 

C. Trigger-Action Programming (TAP) 

In recent years, Trigger-Action Programming (TAP) has 
become a common form of end-user programming in academic 
literature and commercial services like IFTTT and Zapier [52], 
[53]. In TAP, users create a set of event-driven rules, typically 
following an if-then format, using a GUI. TAP has seen 
particular adoption for Internet of Things (IoT) devices and 
online services [52], [54], but TAP-like systems have also 
been used for building automation [55], email processing [56], 
and recently for robotics [57]–[59]. In the IoT context, prior 
work has reported that end users can successfully write TAP 
rules regardless of programming experience [60], [61]. To 
help users overcome common bugs [62], [63] and ensure pro-
gram correctness, researchers have also developed debugging 
tools [64]–[66], paired TAP systems with formal models [67]– 
[70], generated recommendations [71]–[73], and synthesized 
TAP programs [74]–[77]. 

In the robotics context, Leonardi et al. [57] designed a 
TAP system for the Pepper humanoid robot, where most 
participants successfully wrote TAP rules on the first try. Senft 
et al. [58] successfully extended TAP to support situated live 
programming of collaborative robots. Most recently, Ikeda and 
Szafir [59] integrated TAP with AR, finding that doing so 
improves the experience of programming a collaborative robot. 

D. Markov Decision Process (MDP) Programming 

A Markov decision process [78], or MDP, consists of a set 
of states, a set of actions, a transition function dictating the 
probability of moving between any pair of states under the 
influence of an action, a discount factor, and a reward function 
assigning a numerical value for being in each state. An optimal 
policy in an MDP consists of a mapping from states to actions 
that maximizes the cumulative expected discounted reward. 

The problem of reinforcement learning [26], or RL, is often 
formalized as an agent learning to behave optimally in an 
MDP given knowledge of the states, actions, and rewards, but 
only indirect access to the transition function via observing 
the transitions made in its environment. 

Prior work in robotics and human-robot interaction (HRI) 
have utilized RL approaches to both choosing reward functions 
and providing reward-like feedback to robots to produce 
desired robot behavior. Several researchers have studied op-
timizing reward functions to solve specific tasks [79], [80] 
and the expressiveness of reward functions [81], as well as 
ways of making reward functions more expressive to capture 
a broader class of tasks [82]–[84]. Additionally, others have 
demonstrated success in allowing end users to provide reward-
like feedback to RL agents for bringing about desirable 
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behaviors [85], [86]. Porfirio et al. [87] introduced Polaris, an 
end-user programming (EUP) system that stands out by using 
goal predicates as the core building blocks for programming. 
Polaris allows users to specify both high-level robot objectives 
and detailed checkpoints, with an integrated task planner filling 
in the remaining details. Nonetheless, we are not aware of any 
prior attempts to let end users directly specify an MDP. 

III. ENABLING END USERS TO SPECIFY RL PROBLEMS 

Currently, RL problems are specified by experts construct-
ing an MDP using a traditional programming language. While 
that approach makes sense for highly technical tasks, our 
goal was instead to empower non-technical end users to 
leverage RL’s benefits for customization and personalization. 
For instance, we imagine that an end user with a domestic 
robot like the TIAGo [88] or Stretch 3 [89] mobile manipulator 
robots would need to specify exactly how their robot, which 
already has basic navigation and manipulation capabilities, 
should support them in their particular environment. 

A. Key Challenges and Design Decisions 

Enabling end users for the first time to specify RL problems 
required us to overcome four key challenges. First, as non-
technical end users do not know traditional programming 
languages, we needed to create an appropriate user interface 
for specifying MDPs. We did so through an iterative design 
process based on pilot testing and used as inspiration the exist-
ing block-based languages (e.g., Scratch [50]) often used for 
novice programmers. The blocks we designed allowed users 
to specify the three key components of an MDP: the states 
describing the environment and RL agent, the actions an agent 
can take in exploration, and the rewards for reaching particular 
states. Our choice of the primitives for these blocks built on 
the widespread trigger-action programming paradigm [60]. 

The second key challenge is reward specification. Typically, 
an expert user specifying an MDP would assign numerical 
values to specific state transitions. However, as even experts 
struggle to assign appropriate rewards [90], we worried that 
end users would be overwhelmed and struggle to assign 
numbers. In response, we reframed rewards as goals and had 
users assign each goal to one of three priority levels—high, 
medium, and low. This approach reduces the complexity for 
users while sufficing for domestic customization, where a user 
typically has a small number of primary goals and perhaps 
some secondary goals. 

The third key challenge is comprehensive enumeration of 
task-relevant states and actions. If any are missed, the RL 
process might not find an optimal or feasible solution. Thus, 
in addition to Full MDP Programming, we also designed Goal-
Only MDP Programming in which end users would not specify 
states or actions, but only goals. The RL algorithm considers 
all possible states and tries all possible actions. While this 
increases the computational complexity for search, for domes-
tic robots the number of possible states and actions is often 
fairly small. Therefore, the benefits of lower complexity in 
specification would outweigh the added computational costs. 

Fig. 1: We designed a graphical interface based on Blockly 
in which end users program a robot to complete various 
household tasks. Here, the user is programming the robot to 
deliver coffee to them (Task 4) using the Goal-MDP paradigm. 

The fourth challenge is non-technical end user understand-
ing of the learned policy. While a technical specification of 
a policy might suffice for an expert, it would fall short for 
end users. To increase user understanding, we displayed visual 
simulations (on the left side of Figure 1) of the robot following 
the learned policy from randomized starting conditions.1 

B. Choice of RL Algorithm and Performance 

After eliciting the necessary parts of the MDP from the user, 
we automatically construct a more traditional MDP. For both 
Full-MDP and Goal-MDP, all states within the state space 
meeting the user-specified goal condition are assigned the 
reward value (1, 3, or 5) corresponding to the user-specified 
priority level. For Goal-MDP, we automatically include all 
possible states and actions in our representation of the MDP. 

We benchmarked policy generation on a commodity laptop 
by running value iteration for 20 episodes with a discount 
factor γ = 0.92 on all final specifications (correct and 
incorrect) submitted by participants for all tasks in our user 
study. For Full-MDP, the median time to generate policies was 
0.008 seconds (Q1: 0.003 seconds, Q3: 0.070 seconds). For 
Goal-MDP, the median time was 0.047 seconds (Q1: 0.005 
seconds, Q3: 0.649 seconds). Notably, even with Goal-MDP’s 
increases to the state and action spaces, policy generation 
was fast enough to minimally impact the user experience. In 
environments with more states/actions, faster methods—like 
using deep networks [91]—could be considered. 

IV. USER INTERFACE DESIGN 

We designed and implemented an interface for end users 
to program a simulated TIAGo mobile manipulator robot to 
complete tasks in a home. The simulated home has four rooms: 
kitchen, bedroom, playroom, and porch (see Figure 1). Many 
tasks also include a person and everyday objects, such as toys 
or mail. We have open-sourced our code [92]. 

Our interface builds on Blockly [93]. Users can drag and 
drop blocks representing robot actions, environment attributes, 

1To avoid confounds, in our user study we showed analogous visual 
simulations for all paradigms. 
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(a) Sequential Programming 

(d) Goal-Only MDP Programming (b) Trigger-Action Programming (c) Full MDP Programming 

Fig. 2: Example solutions in each end-user programming paradigm for Task 2: Toy in Random Room, where the user programs 
the robot to pick up a toy (that can start in any room) and move it to the playroom. 

and programming structure (e.g., loops). Block-based inter-
faces, which are commonly adopted in trigger-action program-
ming, are powerful because they let end users customize their 
robots according to their preferences. The four programming 
paradigms we designed share two common high-level cate-
gories of blocks. First, state attributes represent the current 
condition of the robot and the environment (e.g., “I am in 
the kitchen”). We assumed the robot only perceives states it 
can sense within the same room. Moreover, the robot does 
not retain the state of the environment from previous time 
steps. Second, actions are specific behaviors that the robot 
can perform (e.g., “pick up the coffee”). 

A. Sequential Programming (Seq) 

In the Sequential Programming (Seq) paradigm, users spec-
ify a sequence of actions that are executed one after the other, 
beginning once the program starts. As shown in Figure 2a, 
action blocks are thus the focus. Note that action blocks may 
have parameters (e.g., “playroom” in “go to the [playroom]” 
set via drop-down menus. It also includes control structures, 
specifically loops (“repeat while/until”) and conditionals. 

B. Trigger-Action Programming (TAP) 

In Trigger-Action Programming (TAP), users create an un-
ordered set of event-driven, if-then rules. When a rule’s trig-
gering event occurs, that action is taken. Rules can take either 
of the following forms: “if <event> then <action>” or “if 
<event> and <state(s)> then <action>.” In the latter, when 
the event occurs, the system checks whether the specified state 
(or states, connected with a Boolean “and”) is true. Triggering 
events often represent changes in the robot’s environment. 

C. Full MDP Programming (Full-MDP) 

In Full MDP Programming (Full-MDP), users specify sets 
of blocks for each MDP component: “actions,” “states,” and 

“goals.” These components are translated as inputs to the re-
inforcement learning algorithm, as described in Section III-B. 
In essence, the learning process aims to achieve the specified 
goals (automatically transformed into the reward function 
typical of RL) by taking actions that transition between the 
specified states. In our simulation, the state space includes 
rooms, robot/environment attributes, and the position of ob-
jects, people, and the robot. States and actions with general 
determiners (e.g., “pick up any”) map to multiple states and 
actions (e.g., both “pick up mail” and “pick up toy”). 

D. Goal-Only MDP Programming (Goal-MDP) 

Goal-Only MDP Programming (Goal-MDP) is a simplified 
version of Full-MDP. It pre-specifies all available actions and 
state attributes (see Section III-A), only requiring the user 
to specify the goal(s). This design transforms the cognitive 
burden of configuring the state and action space into a com-
putational cost, introducing a trade-off between the usability of 
MDP specification and the tractability of the learning problem. 
In all Goal-MDP implementations, the robot’s action set and 
state space remain fixed across tasks to represent all possible 
states and actions in the domestic robotic system. Once the 
user provides a goal, the transition dynamics are computed 
based on these predefined actions and states. 

V. USER STUDY METHODOLOGY 

We conducted a between-subjects user study (N = 409) 
to assess the usability of Full-MDP and Goal-MDP in com-
parison to the Seq and TAP baselines. Each participant was 
assigned to one of these four programming paradigms and 
used it to complete programming tasks. Tasks varied in the 
programming features present in each. We evaluated program 
correctness, completion time, program length, user experience, 
and error types. This study was approved by the University of 
Chicago’s Institutional Review Board (IRB23-0093) 
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TABLE I: Description and features of each programming task. 
Task Features 

0. Baseline: Move from the bedroom to the kitchen. – 

1. Person Avoidance: Avoid a person by exiting any room the person 
enters. The person moves from room to room constantly. 

LP 

2. Toy in Random Room: Move a toy from some unknown room to 
the playroom. The toy’s initial location varies. 

MSA, IU, 
UNP 

3. Toys in Kitchen: Move all toys (variable number) from the kitchen. MSA, IU, UG 

4. Coffee Delivery: Deliver coffee from the kitchen to a person in an 
unknown room. The person’s location varies. 

MSA, EU, 
UNP 

5. Coffee-or-Mail (Separate Rooms): Move mail or coffee to 
different destinations. The initial item varies between mail and coffee. 

MSA, IU, EU 

6. Mail on Porch: Move three pieces of mail off the porch. MSA, UG 

7. Person Avoidance While in Kitchen: Stay in the kitchen while 
avoiding a person. Exit/re-enter the the room based on the person. 

LP, PL 

8. Coffee-or-Mail (Same Room) Move mail or coffee from the porch 
to the kitchen. The initial item varies. 

MSA, IU 

9. Coffee to Kitchen: Move a cup of coffee from the bedroom to the 
kitchen. The robot starts in the playroom. 

MSA 

A. Programming Tasks and Task Features 

The primary use case we envision for having end users 
program robots using RL is to customize robots to meet 
specific, subjective goals. In this context, we designed 10 tasks 
that capture a range of end-user customizations of a TIAGo 
mobile manipulator robot in domestic settings. We believe 
these tasks reflect the functionality that users have desired in 
customizing domestic robots [54], [60]. Table I describes the 
ten tasks, while information in the supplementary materials 
includes the exact instructions given to participants. 

We designed tasks based on seven key programming fea-
tures identified in a pilot study. To gauge the influence of 
each, we compared participant performance on two tasks that 
differ in that feature. For instance, Task 0 has no features, 
while Task 1 has one (Loop Required). If participants perform 
worse on Task 1 than Task 0, it suggests difficulty with Loop 
Required. The seven features and their task pairs follow: 

1) Loop Required (LR) tasks lack terminal states and thus 
require using a loop. We compare Task 0 to Task 1. 

2) Priority Levels (PL) tasks require conveying a prefer-
ence order for actions. We compare Task 1 to Task 7. 

3) Multiple States and Actions (MSA) tasks require 3+ 
state attributes and actions. We compare Task 0 to Task 9. 

4) Initial Uncertainty (IU) tasks involve limited informa-
tion at the program’s start (e.g., uncertainty about a toy’s 
initial location). We compare Task 3 to Task 6. 

5) End Uncertainty (EU) tasks involve limited information 
about the final state. We compare Task 5 to Task 8. 

6) Unwieldy Number of Possibilities (UNP) tasks involve 
three or more possible arrangements (e.g., three rooms to 
check). We compare Task 2 to Task 8. 

7) Unintuitive Goals (UG) tasks involve a goal state that 
must be observed upon task completion that may not be 
straightforward. We compare Task 3 to Task 8. 

B. User Study Protocol 

We recruited participants through Prolific, requiring that 
they be 18+ years old, live in the USA, have a 95%+ approval 
rating on Prolific, and complete the study on a computer (not a 
phone). Participants were randomly assigned to one of the four 
programming paradigms and three of the ten programming 
tasks. They first answered questions about their programming 
backgrounds, then completed a text-based tutorial on their as-
signed paradigm, which included a quiz with attention checks. 
This was followed by an interactive tutorial with three sample 
tasks. Then, participants completed the programming tasks, 
answering questions about their experience and approach after 
each. Finally, they provided their demographics and feedback 
on their overall experience. Participants were compensated $12 
USD and took an average of 70 minutes to complete the study. 

C. Measures 

To compare programming paradigms, we assessed partici-
pants’ programs, timing, and reported experiences as follows: 

1) Program Correctness: We simulated each solution to 
compare its end state with the expected results. For tasks 
without end conditions, we ran the program for 1200 time 
steps and documented the robot and person’s locations at 
each step. For tasks with randomization, we simulated the 
program five times, each with a randomized start state, to 
ensure that the solution holds under different conditions. 
We considered a solution correct only if it produced the 
expected end state in every simulation trial. 

2) Program Characteristics: Our interface recorded the 
time elapsed, number of test runs, number of blocks used, 
and the state of the robot environment at submission. 

3) System Usability: Participants completed the 10-item 
System Usability Scale [94] using 5-point Likert scales. 

4) Subjective Experience: After each task, participants 
responded to statements using 5-point Likert scales about 
the ease of the task, their confidence that they completed 
the task correctly, and their belief in being able to 
program the robot. We included open-ended questions 
about the participant’s process, any situations where their 
program did not work, and how they handled such issues. 

5) Prior Experience: Participants reported their experience 
with programming, trigger-action programming, machine 
learning, and RL (class/tutorial/work/hobby). 

6) Demographics: Participants gave their age and gender. 

D. Statistical Analysis 

To analyze quantitative data, we used mixed-effects logistic 
regression for (binary) program correctness, mixed-effects 
linear regression for completion time and program length, 
and ordinal mixed-effects logistic regression for Likert-scale 
data. All models included the paradigm (Seq, TAP, Full-MDP, 
Goal-MDP), task number, age, gender, and programming 
experience as fixed effects, as well as the participant ID 
as a random effect. For significant factors, we report the 
fixed effects coefficient (c), the standard error (SE), and 
the p-value. To analyze responses to the System Usability 
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Fig. 3: The correctness of participants’ programs by paradigm. 
** p < 0.01, *** p < 0.001. Error bars show standard error. 

Scale [94], we used a one-way analysis of variance (ANOVA) 
test. We included the paradigm, age, gender, and programming 
experience as fixed effects. We report the effect size as η2 . For 
post-hoc pairwise comparisons, we used Tukey’s HSD test. 

VI. RESULTS 

A. Participants 

474 participants completed the study. We excluded 53 
with empty submissions on the programming interface and 
12 who failed the attention check, leaving 409 participants 
for analysis. Among participants, 42.8% identified as female, 
53.0% as male, and 3.2% as non-binary, while 0.5% preferred 
self-description and 0.5% opted not to disclose. 5.6% of 
participants were age 18–24, 35.2% age 25–34, 29.8% age 35– 
44, 3.7% age 45–55, and 5.6% age 55+. 34.0% indicated some 
level of experience with programming (taken a course/tutorial), 
20.8% some familiarity with TAP, and 7.6% some level of 
experience with reinforcement learning. There were no signif-
icant differences in age, gender, or programming experience 
between conditions. 

B. Program Correctness 

We found significant differences across the end-user pro-
gramming paradigms in program correctness. As shown in 
Figure 3, participants who used Full-MDP had a signifi-
cantly lower average correctness (50.68%) compared with 
Seq (72.35%, c = 1.29, SE = 0.29, p < 0.001), TAP 
(67.89%, c = 1.01, SE = 0.26, p < 0.001), and Goal-MDP 
(59.93%, c = 0.55, SE = 0.26, p = 0.035). Additionally, 
Seq had a higher correctness rate than Goal-MDP (c = 
−0.73, SE = 0.28, p = 0.010). No other comparisons yielded 
significant differences. We also examined how participants in 
each paradigm differed in program correctness per task, the 
details of which are included in the supplementary materials. 

C. Performance on Task Features 

To determine how each paradigm performed on the task 
features, we examined the differences in correctness in the 
presence and absence of each feature in the two programming 
tasks that differed by that one feature (Table II). 

We noticed a significant interaction between the paradigm 
and the presence of the Initial Uncertainty feature (c = 

TABLE II: Differences in program correctness across 
paradigms by feature. * p < 0.05, ** p < 0.01, *** p < 0.001. 

Feature Presence Absence 

Initial Seq > Goal-MDP*** 
Uncertainty TAP > Goal-MDP*** 

End Uncertainty Seq > TAP** Seq > Goal-MDP** 
TAP > Goal-MDP* 

Unwieldy # of Goal-MDP > TAP** Seq > Goal-MDP** 
Possibilities TAP > Goal-MDP* 

Unintuitive Goals Seq > Full-MDP*** Seq > Goal-MDP** 
TAP > Full-MDP*** TAP > Goal-MDP* 

0.66, SE = 0.002, p = 0.025). While no significant differ-
ences exist in the presence of Initial Uncertainty, in its absence, 
Seq (χ2 = 14.14, p < 0.0001) and TAP (χ2 = 17.83, p = 
0.0001) had a higher correctness rate compared to Full-MDP. 
Thus, in the presence of Initial Uncertainty the performance 
of Goal-MDP suffers no more than Seq and TAP. 

We also observed a significant interaction between the 
paradigm and the End Uncertainty feature (c = −3.12, SE = 
1.03, p = 0.003). In the presence of End Uncertainty, partici-
pants in Seq performed significantly better than those in TAP 
(χ2 = 0.95, p = 0.0037). Without End Uncertainty, both Seq 
(p = 0.001, χ2 = 14.07) and TAP (p = 0.03, χ2 = 7.44) 
had higher average correctness compared to Goal-MDP. These 
results suggest that Seq better handles End Uncertainty than 
TAP and that the performance of Goal-MDP suffers less than 
Seq and TAP in the presence of End Uncertainty. 

For Unwieldy Number of Possibilities, we found a signifi-
cant interaction between the end-user programming paradigm 
and the presence of the feature (c = −4.07, SE = 1.10, p < 
0.001). In the presence of an Unwieldy Number of Possibil-
ities, Goal-MDP had a significantly higher correctness rate 
compared to TAP (χ2 = 7.44, p = 0.015). In the absence 
of the Unwieldy Number of Possibilities feature, participants 
in Goal-MDP performed worse compared to Seq (χ2 = 
14.07, p = 0.001) and TAP (χ2 = 7.44, p = 0.032). These 
results suggest that Goal-MDP is more suitable for solving 
tasks with a cumbersome number of possible conditions. 

Lastly, we found a significant interaction between the 
paradigm and the presence of the Unintuitive Goals feature 
(c = 2.32, SE = 0.92, p = 0.012). In the presence of 
Unintuitive Goals, we found that participants in Full-MDP had 
lower correctness compared to Seq (χ2 = 6.02, p < 0.001) and 
TAP (χ2 = 1.84, p < 0.001). This indicates that when a task 
has Unintuitive Goals, users fare worse with Full-MDP than 
Seq or TAP. In the feature’s absence, participants assigned to 
Goal-MDP had lower average correctness compared to Seq 
(χ2 = 14.08, p = 0.001) and TAP (χ2 = 7.45, p = 0.032). 

D. Time to Complete the Program 

We found no significant differences across paradigms in 
program completion time: Seq (M = 4.75 min, SD = 7.47), 
TAP (M = 4.33 min, SD = 6.39), Full-MDP (M = 5.34 
min, SD = 8.51), Goal-MDP (M = 5.28 min, SD = 9.65). 
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Fig. 4: Participants’ TAP programs were the longest (# blocks), 
while Goal-MDP programs were the shortest. *** p < 0.001. 

E. Program Length 

We found that the paradigm had a significant influence 
on participants’ program length (number of total blocks in 
the program), see Figure 4. Participants in Goal-MDP au-
thored the shortest programs (M = 2.84, SD = 1.96), 
with significantly fewer blocks compared to Seq (M = 
6.17, SD = 3.82, c = 2.71, SE = 0.61, p < 0.001), TAP 
(M = 10.24, SD = 6.04, c = 7.09, SE = 0.54, p < 0.001), 
and Full-MDP (M = 8.65, SD = 4.78, c = 5.17, SE = 
0.50, p < 0.001). Participants in Seq authored the second 
shortest programs, using significantly fewer blocks compared 
to TAP (c = 4.38, SE = 0.62, p < 0.001) and Full-MDP (c = 
2.47, SE = 0.59, p < 0.001). Finally, Full-MDP had fewer 
blocks compared to TAP (c = 1.92, SE = 0.52, p < 0.001). 

F. User Experiences of Programming the Tasks 

Perceptions of how easy the tasks were differed signifi-
cantly across paradigms. Participants assigned to Seq (M = 
3.60, SD = 1.39) found the tasks significantly easier com-
pared to Full-MDP (c = −0.81, SE = 0.16,M = 3.08, p < 
0.001) and TAP (c = −0.31, SE = 0.149,M = 3.42, p = 
0.035). Further, participants in Goal-MDP (M = 3.45, SD = 
1.01) found the tasks to be significantly easier than those in 
Full-MDP (c = −0.66, SE = 0.15,M = 3.08, p < 0.001). 

Additionally, we found significant differences in partici-
pants’ confidence in accomplishing the tasks across the end-
user programming paradigms. Participants felt more confident 
using the TAP (M = 4.31) interface compared to both Full-
MDP (c = 1.00, SE = 0.15,M = 3.63, p < 0.001) and 
Goal-MDP (c = 0.32, SE = 0.15,M = 4.05, p = 0.033). 
Similarly, Seq (c = 0.81, SE = 0.17,M = 4.12, p < 0.001) 
and Goal-MDP (c = 0.69, SE = 0.15,M = 4.05, p < 0.001) 
had significantly higher confidence compared to Full-MDP. 

We found a significant difference across paradigms in par-
ticipants’ perceived ability to program the task correctly. 
Participants in the Seq (M = 4.44) condition had a signifi-
cantly higher perceived ability to complete the task than Goal-
MDP (c = −0.43, SE = 0.17,M = 4.20, p = 0.011) and 
Full-MDP (c = −1.20, SE = 0.17,M = 3.76, p < 0.001). 
Similarly, participants in the TAP condition had a significantly 
higher perceived ability to complete the task than Goal-MDP 

Seq TAP Full-MDP Goal-MDP 
End-user Programming Paradigms 

0 

10 

20 

30 

40 

50 

60 

70 

80 

A
v
e
ra

g
e
 S

U
S
 s

co
re

 

*** 
*** 

Fig. 5: System Usability Scale (SUS) scores by paradigm. Se-
quential Programming and Trigger-Action Programming were 
rated higher than Full MDP Programming. *** p < 0.001. 

(c = −0.35, SE = 0.15,M = 4.20, p = 0.020) and Full-
MDP (c = −1.12, SE = 0.15,M = 3.76, p < 0.001). 

G. System Usability 

We also examined the usability of paradigms based on 
their System Usability Scale (SUS) scores (see Figure 5), 
which differed significantly across paradigms (F = 9.67, η2 = 
0.07, p < 0.001). Our post-hoc pairwise comparisons revealed 
that participants assigned significantly higher usability scores 
for Seq (M = 67.89, SD = 20.12, p < 0.001) and TAP 
(M = 68.94, SD = 19.17, p < 0.001) compared to Full-MDP 
(M = 54.47, SD = 23.49). The SUS score for Goal-MDP fell 
in the middle (M = 61.56, SD = 24.14) and did not differ 
significantly from other paradigms. 

H. Types of Errors in Programming Paradigms 

In this section, we describe the main errors made by 
participants in each paradigm. The supplementary material 
further details all error types we observed and their frequency. 

1) Common Errors in Sequential Programming: Most er-
rors in Seq solutions can be ascribed to loop misuse. In Loop 
Required tasks (i.e., Task 1 and Task 7), 37.0% (N = 10) of 
participants who authored incorrect programs in Seq did not 
use any loops, and 29.6% (N = 8) had incorrect conditions in 
their loops, resulting in the program’s premature termination 
or the failure to execute the code within the loop. 

2) Common Errors in Trigger-Action Programming: Of the 
TAP participants who made a mistake, 32.5% (N = 13) 
composed conflicting rules, which led to inconsistencies dur-
ing program execution. These can be particularly difficult to 
debug given the robot’s nondeterministic behavior. Another 
30.0% (N = 12) failed to include rules essential for task 
completion. Regarding specific components of the rules in 
TAP, 22.5% (N = 9) of participants who submitted incorrect 
TAP programs chose a wrong event, and 10.0% (N = 4) chose 
a wrong state; participants often seemed to confuse the two. 
These errors highlight the difficulty in formulating rules with 
the necessary event and state combinations. 

3) Common Errors in Full MDP Programming: Of the 
Full-MDP participants who authored incorrect solutions, 
49.0% (N = 26) omitted necessary states and actions for 
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policy generation. Furthermore, 37.7% (N = 20) of Full-
MDP participants who failed to complete their tasks detailed 
step-by-step goals rather than indicating the desired end state. 
Notably, 22.6% (N = 12) of them had a counterintuitive goal, 
in which the stated goal contradicts the expected outcome 
from the robot’s perspective. Additionally, in the presence of 
Priority Levels, 22.6% (N = 12) of participants failed to 
establish a clear order for the specified goals. These errors 
illustrate the difficulty of balancing the tractability of the 
learning problem against the user’s cognitive burden. 

4) Common Errors in Goal-Only MDP Programming: 
Participants in Goal-MDP encountered similar types of errors 
as in Full-MDP. Notably, 34.0% (N = 17) delineated the 
goals at every step of completing the task rather than stating 
the final desired outcome. In the task featuring Priority Levels 
(i.e., Task 7), 30.0% (N = 15) of participants who submitted 
an incorrect solution failed to establish a clear order for task 
completion, and 12.0% (N = 6) of them used ‘and’ incor-
rectly. Participants struggled to distinguish the ‘and’ operator 
from the priority structure built into the ‘Goal’ block. Finally, 
20.0% (N = 10) of incorrect Goal-MDP programs had a 
counterintuitive goal, underscoring challenges in aligning the 
user’s mental model with the robot’s state representation. 

VII. DISCUSSION & CONCLUSION 

We investigated whether end users could effectively pro-
gram a robot using an RL-based approach (RQ1). We devel-
oped two RL-based interfaces with different levels of abstrac-
tion for specifying an MDP — Full-MDP and Goal-MDP. We 
found Goal-MDP, but not Full-MDP, to be a viable alternative 
to traditional approaches for users programming robots (RQ2). 
Compared to Seq and TAP, Goal-MDP was more robust to 
higher levels of task uncertainty and tasks requiring the robot 
to check multiple states or conditions (RQ3). 

A. Takeaways from RL End-User Programming 

Participants using Goal-MDP achieved a 59.93% correct-
ness rate, compared with the more widely used Seq (72.32%) 
and TAP (67.89%) paradigms. In eight out of the ten tasks, 
they specified goals that led to the correct policies, demon-
strating performance comparable to the traditional baselines. 

In particular, Goal-MDP outperformed Seq and TAP in tasks 
with an unwieldy number of possibilities (e.g., moving multi-
ple items to specific rooms), and a higher level of uncertainty 
(e.g., locating and retrieving objects). Goal-MDP excelled in 
these tasks because specifying goals was easier than outlining 
a step-by-step execution plan. Goal-MDP users also wrote sig-
nificantly shorter programs with fewer blocks. While shorter 
programs may not necessarily translate to greater ease of use, 
as users become more used to programming a robot over 
time, we hypothesize that shorter programs might enable a 
better user experience (e.g., by reducing programming time 
or simplifying debugging.) Finally, Goal-MDP achieved a 
high system usability score of 61.56, slightly lower than but 
still comparable to Seq (67.89) and TAP (68.94) with no 
statistically significant difference between them. 

While many Full-MDP users defined accurate goals, they 
struggled to specify the complete set of states, actions, and 
objectives necessary to derive optimal policies. Full-MDP 
consistently performed worse than all other paradigms. Its 
limitations suggest that Goal-MDP is a more feasible option. 

B. Future Improvements to End-User RL Programming 

By examining common errors made across Full-MDP and 
Goal-MDP, we identified a few areas for improvement. The 
first is the discrepancy between the user’s perception and the 
robot’s sensing of its environment. Because MDP components 
are defined from the robot’s perspective, the proper goal 
specification may contradict users’ intuition. One approach is 
to provide the robot with global knowledge and implement 
a mechanism for the robot to memorize and update informa-
tion about the environment. This would reduce the need for 
counterintuitive goals that rely on direct observation. 

The absence of a debugging mechanism for RL-based 
paradigms also presented ostensible hurdles. Participants’ mis-
takes often led to static or counter-intuitive robot behavior. 
Future work should focus on developing a system to visually 
debug RL-programming paradigms and observe the change in 
the robot’s behavior according to reward values. One possi-
bility is for users to specify impromptu positive and negative 
rewards and observe the robot’s plan adapt in real time. This 
would help users understand how their goal specifications 
correspond to the execution of a robot’s policy. 

In the future, we hope to explore the unique advantages 
of RL-based paradigms through more complex tasks, such as 
those featuring an unwieldy number of possibilities. Exam-
ining long-term learning effects and user adaptation to Goal-
MDP would offer valuable insights into its practicality as well. 

C. Limitations 

As an initial exploration of end-user programming with 
RL, we made several simplifying assumptions in designing 
the robot’s environment, to prevent overly complex state and 
action spaces and to shorten the RL training time. Expanding 
the range of skills (actions) is computationally costly. Both 
the RL and robotics communities are actively investigating 
methods to scale RL for real-world tasks. We hope to leverage 
this line of work to enable end users to harness these capabil-
ities and specify tasks that are relevant to them. Future work 
could develop end-user programming interfaces capable of 
integrating state-of-the-art reinforcement learning techniques. 

D. Generalizability of End-User RL Programming 

Our study features high-level tasks and transferable skills for 
robots in various domains. We focused on fundamental opera-
tions, including navigation and object manipulation, which are 
common in commercial and healthcare settings. This ensures 
our tasks are specific enough for precise execution, yet general 
enough for applications across platforms and environments. 
Given that our study maintains the core set of programmable 
capabilities essential for any robot, we believe our findings 
can be generalized to robotic tasks outside the home. 
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