
Enabling End Users to Program Robots
Using Reinforcement Learning
Tewodros W. Ayalew∗

University of Chicago
tewodrosayalew@uchicago.edu

Jennifer Wang∗

Brown University
jennifer wang2@brown.edu

Michael L. Littman
Brown University

mlittman@cs.brown.edu

Blase Ur
University of Chicago
blase@uchicago.edu

Sarah Sebo
University of Chicago

sarahsebo@uchicago.edu

Abstract—Reinforcement learning (RL) is a powerful learning
technique in robotics, where people can specify rewards that
robots learn how to maximize through a process of trial-and-
error. Despite the numerous advantages of RL to robot program-
ming, no approaches to our knowledge have sought to enable non-
technical users to specify RL programs for robots. In this work,
we designed two novel RL-based robot programming paradigms
for non-technical users: Full MDP Programming (Full-MDP)
and Goal-Only MDP Programming (Goal-MDP). To evaluate the
efficacy of these two approaches, we ran a between-subjects
online user study (N = 409) where participants were asked
to program a simulated robot to complete example household
tasks (e.g., delivering coffee) using one of our RL programming
paradigms or a commonly used baseline: Sequential Programming
(Seq), or Trigger-Action Programming (TAP). While users neither
performed well nor reported positive experiences with the Full-
MDP interface, user performance and experience with Goal-MDP
was similar to the baselines (Seq and TAP) with significantly
shorter programs. These results demonstrate that RL-based
paradigms like Goal-MDP are a viable alternative to more
traditional approaches and provide a starting point for robot
programming interfaces that allow end-users to leverage the
myriad benefits of RL for programming robots.

Index Terms—End-User Robot Programming, Reinforcement
Learning, Human-Robot Interaction

I. INTRODUCTION

Robots have the potential to improve the lives of a broad
range of people, serving as tutors to elementary school chil-
dren [1]–[4], providing care to older adults [5]–[8], delivering
supplies [9]–[11], and helping with household tasks [12]–[14].
In these settings, it is essential that users can directly program
robots to meet their needs, adhere to their preferences, and
customize their behavior to the user’s specific context.

Various existing methods let end users customize robot
behavior [15]–[25]. However, to our knowledge no current
methods allow for learning-based approaches where a robot
discovers how to satisfy user preferences through either plan-
ning or an empirical process based on information specified by
end users, such as reinforcement learning (RL). In traditional
uses of RL [26], an expert would specify a Markov decision
process (MDP) representing an environment with an agent

* Tewodros W. Ayalew and Jennifer Wang contributed equally to this paper.

(e.g., robot) in it. The agent would use this specification
algorithmically through exploration and/or optimization to
learn a policy specifying what actions the robot should take.

In this work, we introduce the notion of enabling non-
technical end users to specify the most important parts of an
MDP via a visual programming approach suitable for novices,
leveraging RL to learn the actions their robot should take based
on these specifications. Such an approach could have several
benefits. Rather than specifying a long list of actions for robots
to execute in sequence, RL could enable users to focus solely
on specifying desired outcomes. Additionally, the robot could
use a reinforcement-learning approach to determine the most
effective plan of action to accomplish the goal. This kind of
specification may take less time for the user and enable the
robot to determine a more effective solution.

We designed and implemented two novel end-user in-
terfaces where users specify MDPs. The first is the Full
MDP Programming (Full-MDP) user interface, where an end
user specifies the main components of an MDP: the goal(s)
(rewards) they want the robot to achieve, possible behaviors
(actions) for the robot to try, and key attributes (states) of the
environment. We also designed a second novel interface Goal-
Only MDP Programming (Goal-MDP), in which the end user
only specifies the robot’s goals, and all states and actions
are automatically included to compute the robot’s policy. We
automatically translate the user’s specification to a traditional
MDP and use a reinforcement learning approach to determine
the most effective policy for the robot to accomplish the goal.

To gauge whether our novel end-user RL approach was suc-
cessful and to understand its specific pros and cons compared
to traditional end-user programming techniques for robots, we
sought to answer the following research questions:

• RQ1: Using an RL end-user paradigm for programming
a robot, (a) can users successfully author programs and
(b) do they report a positive user experience?

• RQ2: How do RL end-user robot programming
paradigms compare with traditional approaches in
(a) user’s ability to author correct programs, (b) the time
required, (c) program length, and (d) user experience?

979-8-3503-7893-1/25/$31.00 ©2025 IEEE

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

767

mailto:sarahsebo@uchicago.edu
mailto:blase@uchicago.edu
mailto:mlittman@cs.brown.edu
mailto:wang2@brown.edu
mailto:tewodrosayalew@uchicago.edu

• RQ3: How do RL end-user robot programming
paradigms compare with traditional approaches based on
specific features of the programming task (e.g., handling
repetitive actions, uncertain initial conditions)?

We answered these research questions via a between-
subjects online study in which 409 participants were asked to
program a simulated robot to complete a variety of household
tasks (e.g., delivering coffee) using a randomly assigned pro-
gramming paradigm. In addition to our Full-MDP and Goal-
MDP paradigms, we also implemented and tested two baseline
paradigms: Sequential Programming (Seq), commonly used
for visual end-user programming in robotics, and Trigger-
Action Programming (TAP), a common approach in other
domains (e.g., smart homes), though less common in robotics.

II. RELATED WORK

A. End-User Robot Programming

To enable a broad range of end users to customize robots,
researchers have developed a variety of end-user programming
paradigms [15]. Visual programming, in which users manipu-
late their graphical representation, is common. These graphical
representations include behavior trees [27]–[29], blocks [23],
[30], [31], and icons [25], [32]. These interfaces often include
elements like buttons, sliders, and input forms [33]–[36].

Researchers have explored several other approaches. Robot
learning from demonstration (LfD), also known as imitation
learning, can teach robots skills without the need for end
users to explicitly program them [37]–[41] and can also
be incorporated into explicit robot programs to simplify the
specification of more complex behaviors [19], [23], [42].
Augmented reality (AR) and mixed reality (MR) interfaces
enable users to minimize context switching by embedding into
their environment an interface supporting gestures, touch, and
direct interaction [16]–[18], [43]. Speech and natural language
are sometimes incorporated into end-user robot programming,
most often in combination with other modalities [18], [22],
[44]–[46]. Finally, tangible programming involves the physical
manipulation of real-world objects [24], [25], [32], [47], [48]
and is most often designed for use by children [25], [32].

This work focuses on situations where a user can specify
an entire program for tasks that robots complete in everyday
environments (e.g., the home). Given its past successes in
enabling users to author complete robot programs, we selected
a block-based visual programming end-user interface.

B. Sequential Programming

We define Sequential Programming as a programming
approach where users specify step-by-step instructions for
execution (i.e., imperative programming). The most common
form of sequential programming for non-technical end-users
in both robotics and non-robotics contexts are block-based
programming interfaces where users drag and drop blocks rep-
resenting program instructions that are executed in sequence.
These block-based sequential programming interfaces are the
most widely recognized and successful interfaces for non-
technical users [15], [31], [49], [50]. In robotics, end users

have successfully used block-based sequential programming
interfaces to author robot programs that pick and place objects
in industrial settings [31], [51], deliver items to rooms in
hotels [49], grasp items in everyday environments [23], and
express emotions through sound and movement [30]. Block-
based sequential interfaces are also commonly used to teach
children how to program robots (e.g., Dash, Cozmo, Sphero).

C. Trigger-Action Programming (TAP)

In recent years, Trigger-Action Programming (TAP) has
become a common form of end-user programming in academic
literature and commercial services like IFTTT and Zapier [52],
[53]. In TAP, users create a set of event-driven rules, typically
following an if-then format, using a GUI. TAP has seen
particular adoption for Internet of Things (IoT) devices and
online services [52], [54], but TAP-like systems have also
been used for building automation [55], email processing [56],
and recently for robotics [57]–[59]. In the IoT context, prior
work has reported that end users can successfully write TAP
rules regardless of programming experience [60], [61]. To
help users overcome common bugs [62], [63] and ensure pro-
gram correctness, researchers have also developed debugging
tools [64]–[66], paired TAP systems with formal models [67]–
[70], generated recommendations [71]–[73], and synthesized
TAP programs [74]–[77].

In the robotics context, Leonardi et al. [57] designed a
TAP system for the Pepper humanoid robot, where most
participants successfully wrote TAP rules on the first try. Senft
et al. [58] successfully extended TAP to support situated live
programming of collaborative robots. Most recently, Ikeda and
Szafir [59] integrated TAP with AR, finding that doing so
improves the experience of programming a collaborative robot.

D. Markov Decision Process (MDP) Programming

A Markov decision process [78], or MDP, consists of a set
of states, a set of actions, a transition function dictating the
probability of moving between any pair of states under the
influence of an action, a discount factor, and a reward function
assigning a numerical value for being in each state. An optimal
policy in an MDP consists of a mapping from states to actions
that maximizes the cumulative expected discounted reward.

The problem of reinforcement learning [26], or RL, is often
formalized as an agent learning to behave optimally in an
MDP given knowledge of the states, actions, and rewards, but
only indirect access to the transition function via observing
the transitions made in its environment.

Prior work in robotics and human-robot interaction (HRI)
have utilized RL approaches to both choosing reward functions
and providing reward-like feedback to robots to produce
desired robot behavior. Several researchers have studied op-
timizing reward functions to solve specific tasks [79], [80]
and the expressiveness of reward functions [81], as well as
ways of making reward functions more expressive to capture
a broader class of tasks [82]–[84]. Additionally, others have
demonstrated success in allowing end users to provide reward-
like feedback to RL agents for bringing about desirable

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

768

behaviors [85], [86]. Porfirio et al. [87] introduced Polaris, an
end-user programming (EUP) system that stands out by using
goal predicates as the core building blocks for programming.
Polaris allows users to specify both high-level robot objectives
and detailed checkpoints, with an integrated task planner filling
in the remaining details. Nonetheless, we are not aware of any
prior attempts to let end users directly specify an MDP.

III. ENABLING END USERS TO SPECIFY RL PROBLEMS

Currently, RL problems are specified by experts construct-
ing an MDP using a traditional programming language. While
that approach makes sense for highly technical tasks, our
goal was instead to empower non-technical end users to
leverage RL’s benefits for customization and personalization.
For instance, we imagine that an end user with a domestic
robot like the TIAGo [88] or Stretch 3 [89] mobile manipulator
robots would need to specify exactly how their robot, which
already has basic navigation and manipulation capabilities,
should support them in their particular environment.

A. Key Challenges and Design Decisions

Enabling end users for the first time to specify RL problems
required us to overcome four key challenges. First, as non-
technical end users do not know traditional programming
languages, we needed to create an appropriate user interface
for specifying MDPs. We did so through an iterative design
process based on pilot testing and used as inspiration the exist-
ing block-based languages (e.g., Scratch [50]) often used for
novice programmers. The blocks we designed allowed users
to specify the three key components of an MDP: the states
describing the environment and RL agent, the actions an agent
can take in exploration, and the rewards for reaching particular
states. Our choice of the primitives for these blocks built on
the widespread trigger-action programming paradigm [60].

The second key challenge is reward specification. Typically,
an expert user specifying an MDP would assign numerical
values to specific state transitions. However, as even experts
struggle to assign appropriate rewards [90], we worried that
end users would be overwhelmed and struggle to assign
numbers. In response, we reframed rewards as goals and had
users assign each goal to one of three priority levels—high,
medium, and low. This approach reduces the complexity for
users while sufficing for domestic customization, where a user
typically has a small number of primary goals and perhaps
some secondary goals.

The third key challenge is comprehensive enumeration of
task-relevant states and actions. If any are missed, the RL
process might not find an optimal or feasible solution. Thus,
in addition to Full MDP Programming, we also designed Goal-
Only MDP Programming in which end users would not specify
states or actions, but only goals. The RL algorithm considers
all possible states and tries all possible actions. While this
increases the computational complexity for search, for domes-
tic robots the number of possible states and actions is often
fairly small. Therefore, the benefits of lower complexity in
specification would outweigh the added computational costs.

Fig. 1: We designed a graphical interface based on Blockly
in which end users program a robot to complete various
household tasks. Here, the user is programming the robot to
deliver coffee to them (Task 4) using the Goal-MDP paradigm.

The fourth challenge is non-technical end user understand-
ing of the learned policy. While a technical specification of
a policy might suffice for an expert, it would fall short for
end users. To increase user understanding, we displayed visual
simulations (on the left side of Figure 1) of the robot following
the learned policy from randomized starting conditions.1

B. Choice of RL Algorithm and Performance

After eliciting the necessary parts of the MDP from the user,
we automatically construct a more traditional MDP. For both
Full-MDP and Goal-MDP, all states within the state space
meeting the user-specified goal condition are assigned the
reward value (1, 3, or 5) corresponding to the user-specified
priority level. For Goal-MDP, we automatically include all
possible states and actions in our representation of the MDP.

We benchmarked policy generation on a commodity laptop
by running value iteration for 20 episodes with a discount
factor γ = 0.92 on all final specifications (correct and
incorrect) submitted by participants for all tasks in our user
study. For Full-MDP, the median time to generate policies was
0.008 seconds (Q1: 0.003 seconds, Q3: 0.070 seconds). For
Goal-MDP, the median time was 0.047 seconds (Q1: 0.005
seconds, Q3: 0.649 seconds). Notably, even with Goal-MDP’s
increases to the state and action spaces, policy generation
was fast enough to minimally impact the user experience. In
environments with more states/actions, faster methods—like
using deep networks [91]—could be considered.

IV. USER INTERFACE DESIGN

We designed and implemented an interface for end users
to program a simulated TIAGo mobile manipulator robot to
complete tasks in a home. The simulated home has four rooms:
kitchen, bedroom, playroom, and porch (see Figure 1). Many
tasks also include a person and everyday objects, such as toys
or mail. We have open-sourced our code [92].

Our interface builds on Blockly [93]. Users can drag and
drop blocks representing robot actions, environment attributes,

1To avoid confounds, in our user study we showed analogous visual
simulations for all paradigms.

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

769

(a) Sequential Programming

(d) Goal-Only MDP Programming (b) Trigger-Action Programming (c) Full MDP Programming

Fig. 2: Example solutions in each end-user programming paradigm for Task 2: Toy in Random Room, where the user programs
the robot to pick up a toy (that can start in any room) and move it to the playroom.

and programming structure (e.g., loops). Block-based inter-
faces, which are commonly adopted in trigger-action program-
ming, are powerful because they let end users customize their
robots according to their preferences. The four programming
paradigms we designed share two common high-level cate-
gories of blocks. First, state attributes represent the current
condition of the robot and the environment (e.g., “I am in
the kitchen”). We assumed the robot only perceives states it
can sense within the same room. Moreover, the robot does
not retain the state of the environment from previous time
steps. Second, actions are specific behaviors that the robot
can perform (e.g., “pick up the coffee”).

A. Sequential Programming (Seq)

In the Sequential Programming (Seq) paradigm, users spec-
ify a sequence of actions that are executed one after the other,
beginning once the program starts. As shown in Figure 2a,
action blocks are thus the focus. Note that action blocks may
have parameters (e.g., “playroom” in “go to the [playroom]”
set via drop-down menus. It also includes control structures,
specifically loops (“repeat while/until”) and conditionals.

B. Trigger-Action Programming (TAP)

In Trigger-Action Programming (TAP), users create an un-
ordered set of event-driven, if-then rules. When a rule’s trig-
gering event occurs, that action is taken. Rules can take either
of the following forms: “if <event> then <action>” or “if
<event> and <state(s)> then <action>.” In the latter, when
the event occurs, the system checks whether the specified state
(or states, connected with a Boolean “and”) is true. Triggering
events often represent changes in the robot’s environment.

C. Full MDP Programming (Full-MDP)

In Full MDP Programming (Full-MDP), users specify sets
of blocks for each MDP component: “actions,” “states,” and

“goals.” These components are translated as inputs to the re-
inforcement learning algorithm, as described in Section III-B.
In essence, the learning process aims to achieve the specified
goals (automatically transformed into the reward function
typical of RL) by taking actions that transition between the
specified states. In our simulation, the state space includes
rooms, robot/environment attributes, and the position of ob-
jects, people, and the robot. States and actions with general
determiners (e.g., “pick up any”) map to multiple states and
actions (e.g., both “pick up mail” and “pick up toy”).

D. Goal-Only MDP Programming (Goal-MDP)

Goal-Only MDP Programming (Goal-MDP) is a simplified
version of Full-MDP. It pre-specifies all available actions and
state attributes (see Section III-A), only requiring the user
to specify the goal(s). This design transforms the cognitive
burden of configuring the state and action space into a com-
putational cost, introducing a trade-off between the usability of
MDP specification and the tractability of the learning problem.
In all Goal-MDP implementations, the robot’s action set and
state space remain fixed across tasks to represent all possible
states and actions in the domestic robotic system. Once the
user provides a goal, the transition dynamics are computed
based on these predefined actions and states.

V. USER STUDY METHODOLOGY

We conducted a between-subjects user study (N = 409)
to assess the usability of Full-MDP and Goal-MDP in com-
parison to the Seq and TAP baselines. Each participant was
assigned to one of these four programming paradigms and
used it to complete programming tasks. Tasks varied in the
programming features present in each. We evaluated program
correctness, completion time, program length, user experience,
and error types. This study was approved by the University of
Chicago’s Institutional Review Board (IRB23-0093)

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

770

TABLE I: Description and features of each programming task.
Task Features

0. Baseline: Move from the bedroom to the kitchen. –

1. Person Avoidance: Avoid a person by exiting any room the person
enters. The person moves from room to room constantly.

LP

2. Toy in Random Room: Move a toy from some unknown room to
the playroom. The toy’s initial location varies.

MSA, IU,
UNP

3. Toys in Kitchen: Move all toys (variable number) from the kitchen. MSA, IU, UG

4. Coffee Delivery: Deliver coffee from the kitchen to a person in an
unknown room. The person’s location varies.

MSA, EU,
UNP

5. Coffee-or-Mail (Separate Rooms): Move mail or coffee to
different destinations. The initial item varies between mail and coffee.

MSA, IU, EU

6. Mail on Porch: Move three pieces of mail off the porch. MSA, UG

7. Person Avoidance While in Kitchen: Stay in the kitchen while
avoiding a person. Exit/re-enter the the room based on the person.

LP, PL

8. Coffee-or-Mail (Same Room) Move mail or coffee from the porch
to the kitchen. The initial item varies.

MSA, IU

9. Coffee to Kitchen: Move a cup of coffee from the bedroom to the
kitchen. The robot starts in the playroom.

MSA

A. Programming Tasks and Task Features

The primary use case we envision for having end users
program robots using RL is to customize robots to meet
specific, subjective goals. In this context, we designed 10 tasks
that capture a range of end-user customizations of a TIAGo
mobile manipulator robot in domestic settings. We believe
these tasks reflect the functionality that users have desired in
customizing domestic robots [54], [60]. Table I describes the
ten tasks, while information in the supplementary materials
includes the exact instructions given to participants.

We designed tasks based on seven key programming fea-
tures identified in a pilot study. To gauge the influence of
each, we compared participant performance on two tasks that
differ in that feature. For instance, Task 0 has no features,
while Task 1 has one (Loop Required). If participants perform
worse on Task 1 than Task 0, it suggests difficulty with Loop
Required. The seven features and their task pairs follow:

1) Loop Required (LR) tasks lack terminal states and thus
require using a loop. We compare Task 0 to Task 1.

2) Priority Levels (PL) tasks require conveying a prefer-
ence order for actions. We compare Task 1 to Task 7.

3) Multiple States and Actions (MSA) tasks require 3+
state attributes and actions. We compare Task 0 to Task 9.

4) Initial Uncertainty (IU) tasks involve limited informa-
tion at the program’s start (e.g., uncertainty about a toy’s
initial location). We compare Task 3 to Task 6.

5) End Uncertainty (EU) tasks involve limited information
about the final state. We compare Task 5 to Task 8.

6) Unwieldy Number of Possibilities (UNP) tasks involve
three or more possible arrangements (e.g., three rooms to
check). We compare Task 2 to Task 8.

7) Unintuitive Goals (UG) tasks involve a goal state that
must be observed upon task completion that may not be
straightforward. We compare Task 3 to Task 8.

B. User Study Protocol

We recruited participants through Prolific, requiring that
they be 18+ years old, live in the USA, have a 95%+ approval
rating on Prolific, and complete the study on a computer (not a
phone). Participants were randomly assigned to one of the four
programming paradigms and three of the ten programming
tasks. They first answered questions about their programming
backgrounds, then completed a text-based tutorial on their as-
signed paradigm, which included a quiz with attention checks.
This was followed by an interactive tutorial with three sample
tasks. Then, participants completed the programming tasks,
answering questions about their experience and approach after
each. Finally, they provided their demographics and feedback
on their overall experience. Participants were compensated $12
USD and took an average of 70 minutes to complete the study.

C. Measures

To compare programming paradigms, we assessed partici-
pants’ programs, timing, and reported experiences as follows:

1) Program Correctness: We simulated each solution to
compare its end state with the expected results. For tasks
without end conditions, we ran the program for 1200 time
steps and documented the robot and person’s locations at
each step. For tasks with randomization, we simulated the
program five times, each with a randomized start state, to
ensure that the solution holds under different conditions.
We considered a solution correct only if it produced the
expected end state in every simulation trial.

2) Program Characteristics: Our interface recorded the
time elapsed, number of test runs, number of blocks used,
and the state of the robot environment at submission.

3) System Usability: Participants completed the 10-item
System Usability Scale [94] using 5-point Likert scales.

4) Subjective Experience: After each task, participants
responded to statements using 5-point Likert scales about
the ease of the task, their confidence that they completed
the task correctly, and their belief in being able to
program the robot. We included open-ended questions
about the participant’s process, any situations where their
program did not work, and how they handled such issues.

5) Prior Experience: Participants reported their experience
with programming, trigger-action programming, machine
learning, and RL (class/tutorial/work/hobby).

6) Demographics: Participants gave their age and gender.

D. Statistical Analysis

To analyze quantitative data, we used mixed-effects logistic
regression for (binary) program correctness, mixed-effects
linear regression for completion time and program length,
and ordinal mixed-effects logistic regression for Likert-scale
data. All models included the paradigm (Seq, TAP, Full-MDP,
Goal-MDP), task number, age, gender, and programming
experience as fixed effects, as well as the participant ID
as a random effect. For significant factors, we report the
fixed effects coefficient (c), the standard error (SE), and
the p-value. To analyze responses to the System Usability

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

771

Seq TAP Full-MDP Goal-MDP
End-user Programming Paradigms

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
ct

n
e
ss

 R
a
te ***

*

**

Fig. 3: The correctness of participants’ programs by paradigm.
** p < 0.01, *** p < 0.001. Error bars show standard error.

Scale [94], we used a one-way analysis of variance (ANOVA)
test. We included the paradigm, age, gender, and programming
experience as fixed effects. We report the effect size as η2 . For
post-hoc pairwise comparisons, we used Tukey’s HSD test.

VI. RESULTS

A. Participants

474 participants completed the study. We excluded 53
with empty submissions on the programming interface and
12 who failed the attention check, leaving 409 participants
for analysis. Among participants, 42.8% identified as female,
53.0% as male, and 3.2% as non-binary, while 0.5% preferred
self-description and 0.5% opted not to disclose. 5.6% of
participants were age 18–24, 35.2% age 25–34, 29.8% age 35–
44, 3.7% age 45–55, and 5.6% age 55+. 34.0% indicated some
level of experience with programming (taken a course/tutorial),
20.8% some familiarity with TAP, and 7.6% some level of
experience with reinforcement learning. There were no signif-
icant differences in age, gender, or programming experience
between conditions.

B. Program Correctness

We found significant differences across the end-user pro-
gramming paradigms in program correctness. As shown in
Figure 3, participants who used Full-MDP had a signifi-
cantly lower average correctness (50.68%) compared with
Seq (72.35%, c = 1.29, SE = 0.29, p < 0.001), TAP
(67.89%, c = 1.01, SE = 0.26, p < 0.001), and Goal-MDP
(59.93%, c = 0.55, SE = 0.26, p = 0.035). Additionally,
Seq had a higher correctness rate than Goal-MDP (c =
−0.73, SE = 0.28, p = 0.010). No other comparisons yielded
significant differences. We also examined how participants in
each paradigm differed in program correctness per task, the
details of which are included in the supplementary materials.

C. Performance on Task Features

To determine how each paradigm performed on the task
features, we examined the differences in correctness in the
presence and absence of each feature in the two programming
tasks that differed by that one feature (Table II).

We noticed a significant interaction between the paradigm
and the presence of the Initial Uncertainty feature (c =

TABLE II: Differences in program correctness across
paradigms by feature. * p < 0.05, ** p < 0.01, *** p < 0.001.

Feature Presence Absence

Initial Seq > Goal-MDP***
Uncertainty TAP > Goal-MDP***

End Uncertainty Seq > TAP** Seq > Goal-MDP**
TAP > Goal-MDP*

Unwieldy # of Goal-MDP > TAP** Seq > Goal-MDP**
Possibilities TAP > Goal-MDP*

Unintuitive Goals Seq > Full-MDP*** Seq > Goal-MDP**
TAP > Full-MDP*** TAP > Goal-MDP*

0.66, SE = 0.002, p = 0.025). While no significant differ-
ences exist in the presence of Initial Uncertainty, in its absence,
Seq (χ2 = 14.14, p < 0.0001) and TAP (χ2 = 17.83, p =
0.0001) had a higher correctness rate compared to Full-MDP.
Thus, in the presence of Initial Uncertainty the performance
of Goal-MDP suffers no more than Seq and TAP.

We also observed a significant interaction between the
paradigm and the End Uncertainty feature (c = −3.12, SE =
1.03, p = 0.003). In the presence of End Uncertainty, partici-
pants in Seq performed significantly better than those in TAP
(χ2 = 0.95, p = 0.0037). Without End Uncertainty, both Seq
(p = 0.001, χ2 = 14.07) and TAP (p = 0.03, χ2 = 7.44)
had higher average correctness compared to Goal-MDP. These
results suggest that Seq better handles End Uncertainty than
TAP and that the performance of Goal-MDP suffers less than
Seq and TAP in the presence of End Uncertainty.

For Unwieldy Number of Possibilities, we found a signifi-
cant interaction between the end-user programming paradigm
and the presence of the feature (c = −4.07, SE = 1.10, p <
0.001). In the presence of an Unwieldy Number of Possibil-
ities, Goal-MDP had a significantly higher correctness rate
compared to TAP (χ2 = 7.44, p = 0.015). In the absence
of the Unwieldy Number of Possibilities feature, participants
in Goal-MDP performed worse compared to Seq (χ2 =
14.07, p = 0.001) and TAP (χ2 = 7.44, p = 0.032). These
results suggest that Goal-MDP is more suitable for solving
tasks with a cumbersome number of possible conditions.

Lastly, we found a significant interaction between the
paradigm and the presence of the Unintuitive Goals feature
(c = 2.32, SE = 0.92, p = 0.012). In the presence of
Unintuitive Goals, we found that participants in Full-MDP had
lower correctness compared to Seq (χ2 = 6.02, p < 0.001) and
TAP (χ2 = 1.84, p < 0.001). This indicates that when a task
has Unintuitive Goals, users fare worse with Full-MDP than
Seq or TAP. In the feature’s absence, participants assigned to
Goal-MDP had lower average correctness compared to Seq
(χ2 = 14.08, p = 0.001) and TAP (χ2 = 7.45, p = 0.032).

D. Time to Complete the Program

We found no significant differences across paradigms in
program completion time: Seq (M = 4.75 min, SD = 7.47),
TAP (M = 4.33 min, SD = 6.39), Full-MDP (M = 5.34
min, SD = 8.51), Goal-MDP (M = 5.28 min, SD = 9.65).

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

772

Seq TAP Full-MDP Goal-MDP
End-user Programming Paradigms

0

2

4

6

8

10

12
P
ro

g
ra

m
 l
e
n
g
th

Fig. 4: Participants’ TAP programs were the longest (# blocks),
while Goal-MDP programs were the shortest. *** p < 0.001.

E. Program Length

We found that the paradigm had a significant influence
on participants’ program length (number of total blocks in
the program), see Figure 4. Participants in Goal-MDP au-
thored the shortest programs (M = 2.84, SD = 1.96),
with significantly fewer blocks compared to Seq (M =
6.17, SD = 3.82, c = 2.71, SE = 0.61, p < 0.001), TAP
(M = 10.24, SD = 6.04, c = 7.09, SE = 0.54, p < 0.001),
and Full-MDP (M = 8.65, SD = 4.78, c = 5.17, SE =
0.50, p < 0.001). Participants in Seq authored the second
shortest programs, using significantly fewer blocks compared
to TAP (c = 4.38, SE = 0.62, p < 0.001) and Full-MDP (c =
2.47, SE = 0.59, p < 0.001). Finally, Full-MDP had fewer
blocks compared to TAP (c = 1.92, SE = 0.52, p < 0.001).

F. User Experiences of Programming the Tasks

Perceptions of how easy the tasks were differed signifi-
cantly across paradigms. Participants assigned to Seq (M =
3.60, SD = 1.39) found the tasks significantly easier com-
pared to Full-MDP (c = −0.81, SE = 0.16,M = 3.08, p <
0.001) and TAP (c = −0.31, SE = 0.149,M = 3.42, p =
0.035). Further, participants in Goal-MDP (M = 3.45, SD =
1.01) found the tasks to be significantly easier than those in
Full-MDP (c = −0.66, SE = 0.15,M = 3.08, p < 0.001).

Additionally, we found significant differences in partici-
pants’ confidence in accomplishing the tasks across the end-
user programming paradigms. Participants felt more confident
using the TAP (M = 4.31) interface compared to both Full-
MDP (c = 1.00, SE = 0.15,M = 3.63, p < 0.001) and
Goal-MDP (c = 0.32, SE = 0.15,M = 4.05, p = 0.033).
Similarly, Seq (c = 0.81, SE = 0.17,M = 4.12, p < 0.001)
and Goal-MDP (c = 0.69, SE = 0.15,M = 4.05, p < 0.001)
had significantly higher confidence compared to Full-MDP.

We found a significant difference across paradigms in par-
ticipants’ perceived ability to program the task correctly.
Participants in the Seq (M = 4.44) condition had a signifi-
cantly higher perceived ability to complete the task than Goal-
MDP (c = −0.43, SE = 0.17,M = 4.20, p = 0.011) and
Full-MDP (c = −1.20, SE = 0.17,M = 3.76, p < 0.001).
Similarly, participants in the TAP condition had a significantly
higher perceived ability to complete the task than Goal-MDP

Seq TAP Full-MDP Goal-MDP
End-user Programming Paradigms

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 S

U
S
 s

co
re

Fig. 5: System Usability Scale (SUS) scores by paradigm. Se-
quential Programming and Trigger-Action Programming were
rated higher than Full MDP Programming. *** p < 0.001.

(c = −0.35, SE = 0.15,M = 4.20, p = 0.020) and Full-
MDP (c = −1.12, SE = 0.15,M = 3.76, p < 0.001).

G. System Usability

We also examined the usability of paradigms based on
their System Usability Scale (SUS) scores (see Figure 5),
which differed significantly across paradigms (F = 9.67, η2 =
0.07, p < 0.001). Our post-hoc pairwise comparisons revealed
that participants assigned significantly higher usability scores
for Seq (M = 67.89, SD = 20.12, p < 0.001) and TAP
(M = 68.94, SD = 19.17, p < 0.001) compared to Full-MDP
(M = 54.47, SD = 23.49). The SUS score for Goal-MDP fell
in the middle (M = 61.56, SD = 24.14) and did not differ
significantly from other paradigms.

H. Types of Errors in Programming Paradigms

In this section, we describe the main errors made by
participants in each paradigm. The supplementary material
further details all error types we observed and their frequency.

1) Common Errors in Sequential Programming: Most er-
rors in Seq solutions can be ascribed to loop misuse. In Loop
Required tasks (i.e., Task 1 and Task 7), 37.0% (N = 10) of
participants who authored incorrect programs in Seq did not
use any loops, and 29.6% (N = 8) had incorrect conditions in
their loops, resulting in the program’s premature termination
or the failure to execute the code within the loop.

2) Common Errors in Trigger-Action Programming: Of the
TAP participants who made a mistake, 32.5% (N = 13)
composed conflicting rules, which led to inconsistencies dur-
ing program execution. These can be particularly difficult to
debug given the robot’s nondeterministic behavior. Another
30.0% (N = 12) failed to include rules essential for task
completion. Regarding specific components of the rules in
TAP, 22.5% (N = 9) of participants who submitted incorrect
TAP programs chose a wrong event, and 10.0% (N = 4) chose
a wrong state; participants often seemed to confuse the two.
These errors highlight the difficulty in formulating rules with
the necessary event and state combinations.

3) Common Errors in Full MDP Programming: Of the
Full-MDP participants who authored incorrect solutions,
49.0% (N = 26) omitted necessary states and actions for

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

773

policy generation. Furthermore, 37.7% (N = 20) of Full-
MDP participants who failed to complete their tasks detailed
step-by-step goals rather than indicating the desired end state.
Notably, 22.6% (N = 12) of them had a counterintuitive goal,
in which the stated goal contradicts the expected outcome
from the robot’s perspective. Additionally, in the presence of
Priority Levels, 22.6% (N = 12) of participants failed to
establish a clear order for the specified goals. These errors
illustrate the difficulty of balancing the tractability of the
learning problem against the user’s cognitive burden.

4) Common Errors in Goal-Only MDP Programming:
Participants in Goal-MDP encountered similar types of errors
as in Full-MDP. Notably, 34.0% (N = 17) delineated the
goals at every step of completing the task rather than stating
the final desired outcome. In the task featuring Priority Levels
(i.e., Task 7), 30.0% (N = 15) of participants who submitted
an incorrect solution failed to establish a clear order for task
completion, and 12.0% (N = 6) of them used ‘and’ incor-
rectly. Participants struggled to distinguish the ‘and’ operator
from the priority structure built into the ‘Goal’ block. Finally,
20.0% (N = 10) of incorrect Goal-MDP programs had a
counterintuitive goal, underscoring challenges in aligning the
user’s mental model with the robot’s state representation.

VII. DISCUSSION & CONCLUSION

We investigated whether end users could effectively pro-
gram a robot using an RL-based approach (RQ1). We devel-
oped two RL-based interfaces with different levels of abstrac-
tion for specifying an MDP — Full-MDP and Goal-MDP. We
found Goal-MDP, but not Full-MDP, to be a viable alternative
to traditional approaches for users programming robots (RQ2).
Compared to Seq and TAP, Goal-MDP was more robust to
higher levels of task uncertainty and tasks requiring the robot
to check multiple states or conditions (RQ3).

A. Takeaways from RL End-User Programming

Participants using Goal-MDP achieved a 59.93% correct-
ness rate, compared with the more widely used Seq (72.32%)
and TAP (67.89%) paradigms. In eight out of the ten tasks,
they specified goals that led to the correct policies, demon-
strating performance comparable to the traditional baselines.

In particular, Goal-MDP outperformed Seq and TAP in tasks
with an unwieldy number of possibilities (e.g., moving multi-
ple items to specific rooms), and a higher level of uncertainty
(e.g., locating and retrieving objects). Goal-MDP excelled in
these tasks because specifying goals was easier than outlining
a step-by-step execution plan. Goal-MDP users also wrote sig-
nificantly shorter programs with fewer blocks. While shorter
programs may not necessarily translate to greater ease of use,
as users become more used to programming a robot over
time, we hypothesize that shorter programs might enable a
better user experience (e.g., by reducing programming time
or simplifying debugging.) Finally, Goal-MDP achieved a
high system usability score of 61.56, slightly lower than but
still comparable to Seq (67.89) and TAP (68.94) with no
statistically significant difference between them.

While many Full-MDP users defined accurate goals, they
struggled to specify the complete set of states, actions, and
objectives necessary to derive optimal policies. Full-MDP
consistently performed worse than all other paradigms. Its
limitations suggest that Goal-MDP is a more feasible option.

B. Future Improvements to End-User RL Programming

By examining common errors made across Full-MDP and
Goal-MDP, we identified a few areas for improvement. The
first is the discrepancy between the user’s perception and the
robot’s sensing of its environment. Because MDP components
are defined from the robot’s perspective, the proper goal
specification may contradict users’ intuition. One approach is
to provide the robot with global knowledge and implement
a mechanism for the robot to memorize and update informa-
tion about the environment. This would reduce the need for
counterintuitive goals that rely on direct observation.

The absence of a debugging mechanism for RL-based
paradigms also presented ostensible hurdles. Participants’ mis-
takes often led to static or counter-intuitive robot behavior.
Future work should focus on developing a system to visually
debug RL-programming paradigms and observe the change in
the robot’s behavior according to reward values. One possi-
bility is for users to specify impromptu positive and negative
rewards and observe the robot’s plan adapt in real time. This
would help users understand how their goal specifications
correspond to the execution of a robot’s policy.

In the future, we hope to explore the unique advantages
of RL-based paradigms through more complex tasks, such as
those featuring an unwieldy number of possibilities. Exam-
ining long-term learning effects and user adaptation to Goal-
MDP would offer valuable insights into its practicality as well.

C. Limitations

As an initial exploration of end-user programming with
RL, we made several simplifying assumptions in designing
the robot’s environment, to prevent overly complex state and
action spaces and to shorten the RL training time. Expanding
the range of skills (actions) is computationally costly. Both
the RL and robotics communities are actively investigating
methods to scale RL for real-world tasks. We hope to leverage
this line of work to enable end users to harness these capabil-
ities and specify tasks that are relevant to them. Future work
could develop end-user programming interfaces capable of
integrating state-of-the-art reinforcement learning techniques.

D. Generalizability of End-User RL Programming

Our study features high-level tasks and transferable skills for
robots in various domains. We focused on fundamental opera-
tions, including navigation and object manipulation, which are
common in commercial and healthcare settings. This ensures
our tasks are specific enough for precise execution, yet general
enough for applications across platforms and environments.
Given that our study maintains the core set of programmable
capabilities essential for any robot, we believe our findings
can be generalized to robotic tasks outside the home.

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

774

REFERENCES

[1] T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and
F. Tanaka, “Social robots for education: A review,” Science Robotics,
vol. 3, no. 21, pp. 1–9, 2018.

[2] J. E. Michaelis and B. Mutlu, “Reading socially: Transforming the in-
home reading experience with a learning-companion robot,” Science
Robotics, vol. 3, no. 21, pp. 1–11, 2018.

[3] H. W. Park, I. Grover, S. Spaulding, L. Gomez, and C. Breazeal, “A
model-free affective reinforcement learning approach to personalization
of an autonomous social robot companion for early literacy education,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 687–694.

[4] A. Ramachandran, S. S. Sebo, and B. Scassellati, “Personalized robot
tutoring using the assistive tutor POMDP (AT-POMDP),” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 8050–8057.

[5] H.-M. Gross, S. Mueller, C. Schroeter, M. Volkhardt, A. Scheidig,
K. Debes, K. Richter, and N. Doering, “Robot companion for domestic
health assistance: Implementation, test and case study under everyday
conditions in private apartments,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 5992–5999.

[6] H. R. Lee and L. D. Riek, “Reframing assistive robots to promote suc-
cessful aging,” ACM Transactions on Human-Robot Interaction (THRI),
vol. 7, no. 1, pp. 1–23, 2018.

[7] H. Robinson, B. MacDonald, and E. Broadbent, “The role of healthcare
robots for older people at home: A review,” International Journal of
Social Robotics, vol. 6, no. 4, pp. 575–591, 2014.

[8] C.-A. Smarr, A. Prakash, J. M. Beer, T. L. Mitzner, C. C. Kemp, and
W. A. Rogers, “Older adults’ preferences for and acceptance of robot
assistance for everyday living tasks,” in Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 56, no. 1. SAGE
Publications Sage CA: Los Angeles, CA, 2012, pp. 153–157.

[9] J. E. Martinez, D. VanLeeuwen, B. B. Stringam, and M. R. Fraune,
“Hey?! what did you think about that robot?: Groups polarize users’
acceptance and trust of food delivery robots,” in Proceedings of the
2023 ACM/IEEE International Conference on Human-Robot Interaction,
2023, pp. 417–427.

[10] B. Mutlu and J. Forlizzi, “Robots in organizations: the role of work-
flow, social, and environmental factors in human-robot interaction,” in
Proceedings of the 3rd ACM/IEEE International Conference on Human-
Robot Interaction, 2008, pp. 287–294.

[11] D. Weinberg, H. Dwyer, S. E. Fox, and N. Martelaro, “Sharing the
sidewalk: Observing delivery robot interactions with pedestrians during
a pilot in Pittsburgh, PA,” Multimodal Technologies and Interaction,
vol. 7, no. 5, p. 53, 2023.

[12] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment:
A study of the Romba vacuum in the home,” in Proceedings of the 1st
ACM SIGCHI/SIGART Conference on Human-Robot Interaction, 2006,
pp. 258–265.

[13] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning visible connectivity
dynamics for cloth smoothing,” in Conference on Robot Learning.
PMLR, 2022, pp. 256–266.

[14] B. Tang, M. Corsaro, G. Konidaris, S. Nikolaidis, and S. Tellex,
“Learning collaborative pushing and grasping policies in dense clutter,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 6177–6184.

[15] G. Ajaykumar, M. Steele, and C.-M. Huang, “A survey on end-user
robot programming,” ACM Computing Surveys (CSUR), vol. 54, no. 8,
pp. 1–36, 2021.

[16] D. Bambuˆ sek, Z. Materna, M. Kapinus, V. Beran, and P. Smrˇ z, “Com-
bining interactive spatial augmented reality with head-mounted display
for end-user collaborative robot programming,” in 2019 28th IEEE Inter-
national Conference on Robot and Human Interactive Communication
(RO-MAN). IEEE, 2019, pp. 1–8.

[17] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and G. Konidaris,
“End-user robot programming using mixed reality,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 2707–2713.

[18] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos,
and E. Croft, “Robot programming through augmented trajectories in
augmented reality,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1838–1844.

[19] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 5537–5544.

[20] Y. S. Liang, D. Pellier, H. Fiorino, S. Pesty, and M. Cakmak, “Simul-
taneous end-user programming of goals and actions for robotic shelf
organization,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 6566–6573.

[21] J. E. Young, T. Igarashi, E. Sharlin, D. Sakamoto, and J. Allen,
“Design and evaluation techniques for authoring interactive and stylistic
behaviors,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 3, no. 4, pp. 1–36, 2014.

[22] M. Cakmak and L. Takayama, “Teaching people how to teach robots:
The effect of instructional materials and dialog design,” in Proceedings
of the 2014 ACM/IEEE International Conference on Human-Robot
Interaction, 2014, pp. 431–438.

[23] J. Huang and M. Cakmak, “Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, 2017, pp. 453–462.

[24] A. Kubota, E. I. Peterson, V. Rajendren, H. Kress-Gazit, and L. D.
Riek, “Jessie: Synthesizing social robot behaviors for personalized
neurorehabilitation and beyond,” in Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 2020, pp. 121–
130.

[25] T. Sapounidis and S. Demetriadis, “Tangible versus graphical user
interfaces for robot programming: Exploring cross-age children’s pref-
erences,” Personal and Ubiquitous Computing, vol. 17, pp. 1775–1786,
2013.

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[27] A. Barišić, J. Cambeiro, V. Amaral, M. Goulão, and T. Mota, “Lever-
aging teenagers feedback in the development of a domain-specific
language: The case of programming low-cost robots,” in Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp.
1221–1229.

[28] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager, “Eval-
uating methods for end-user creation of robot task plans,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 6086–6092.

[29] D. Porfirio, E. Fisher, A. Saupp´ e, A. Albarghouthi, and B. Mutlu,
“Bodystorming human-robot interactions,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
2019, pp. 479–491.

[30] S. Moros, L. Wood, B. Robins, K. Dautenhahn, and ´ A. Castro-Gonz´ alez,
“Programming a humanoid robot with the Scratch language,” in Robotics
in Education: Current Research and Innovations 10. Springer, 2020,
pp. 222–233.

[31] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly goes
to work: Block-based programming for industrial robots,” in 2017 IEEE
Blocks and Beyond Workshop (B&B). IEEE, 2017, pp. 29–36.

[32] K. Ryokai, M. J. Lee, and J. M. Breitbart, “Children’s storytelling and
programming with robotic characters,” in Proceedings of the Seventh
ACM Conference on Creativity and Cognition, 2009, pp. 19–28.

[33] Y. S. Liang, D. Pellier, H. Fiorino, and S. Pesty, “End-user programming
of low-and high-level actions for robotic task planning,” in 2019
28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2019, pp. 1–8.

[34] M. Racca, V. Kyrki, and M. Cakmak, “Interactive tuning of robot
program parameters via expected divergence maximization,” in Proceed-
ings of the 2020 ACM/IEEE International Conference on Human-Robot
Interaction, 2020, pp. 629–638.

[35] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh, and O. Madsen,
“Skill-based instruction of collaborative robots in industrial settings,”
Robotics and Computer-Integrated Manufacturing, vol. 53, pp. 72–80,
2018.

[36] M. Hagenow, E. Senft, R. Radwin, M. Gleicher, M. Zinn, and B. Mutlu,
“A system for human-robot teaming through end-user programming and
shared autonomy,” Proceedings of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction, vol. 54, p. 231–239, Mar 2024.

[37] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, 2009.

[38] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Survey: Robot
programming by demonstration,” Springer, Tech. Rep., 2008.

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

775

[39] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends in
Cognitive Sciences, vol. 6, no. 11, pp. 481–487, 2002.

[40] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A
survey of learning methods,” ACM Computing Surveys (CSUR), vol. 50,
no. 2, pp. 1–35, 2017.

[41] Y. Liu, Z. Li, H. Liu, and Z. Kan, “Skill transfer learning for au-
tonomous robots and human–robot cooperation: A survey,” Robotics and
Autonomous Systems, vol. 128, p. 103515, 2020.

[42] M. Stenmark, M. Haage, and E. A. Topp, “Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, 2017, pp. 463–472.

[43] Y. Gao and C.-M. Huang, “PATI: A projection-based augmented table-
top interface for robot programming,” in Proceedings of the 24th
International Conference on Intelligent User Interfaces, 2019, pp. 345–
355.

[44] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations.”
in Robotics: Science and Systems, 2014, pp. 1–9.

[45] J. F. Gorostiza and M. A. Salichs, “End-user programming of a social
robot by dialog,” Robotics and Autonomous Systems, vol. 59, no. 12,
pp. 1102–1114, 2011.

[46] U. B. Karli, J.-T. Chen, V. N. Antony, and C.-M. Huang,
“Alchemist: LLM-aided end-user development of robot applications:
Proceedings of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction,” Mar 2024. [Online]. Available: https:
//doi.org/10.1145/3610977.3634969

[47] D. J. Porfirio, L. Stegner, M. Cakmak, A. Sauppé, A. Albarghouthi, and
B. Mutlu, “Figaro: A tabletop authoring environment for human-robot
interaction,” in Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, 2021, pp. 1–15.

[48] Y. S. Sefidgar, P. Agarwal, and M. Cakmak, “Situated tangible robot
programming,” in Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 2017, pp. 473–482.

[49] J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid
programming system for service robots,” in 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
2016, pp. 295–302.

[50] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: Programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[51] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 2018,
pp. 1–12.

[52] A. Rahmati, E. Fernandes, J. Jung, and A. Prakash, “IFTTT vs. Zapier:
A comparative study of trigger-action programming frameworks,” arXiv
preprint arXiv:1709.02788, 2017.

[53] X. Mi, F. Qian, Y. Zhang, and X. Wang, “An empirical characterization
of IFTTT: Ecosystem, usage, and performance,” in Proceedings of the
2017 Internet Measurement Conference, 2017, pp. 398–404.

[54] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-action programming in the
wild: An analysis of 200,000 IFTTT recipes,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, 2016,
pp. 3227–3231.

[55] A. A. Nacci, V. Rana, B. Balaji, P. Spoletini, R. Gupta, D. Sciuto, and
Y. Agarwal, “Buildingrules: A trigger-action–based system to manage
complex commercial buildings,” ACM Transactions on Cyber-Physical
Systems, vol. 2, no. 2, pp. 1–22, 2018.

[56] Microsoft Dynamics 365 Team, “Announcing RPA, enhanced security,
no-code virtual agents, and more for Microsoft Power Platform,”
Blog Post, 2019. [Online]. Available: https://cloudblogs.microsoft.com/
dynamics365/bdm/2019/11/04/announcing-rpa-enhanced-security-no-
code-virtual-agents-and-more-for-microsoft-power-platform/

[57] N. Leonardi, M. Manca, F. Patern` o, and C. Santoro, “Trigger-action pro-
gramming for personalising humanoid robot behaviour,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
2019, pp. 1–13.

[58] E. Senft, M. Hagenow, R. Radwin, M. Zinn, M. Gleicher, and B. Mutlu,
“Situated live programming for human-robot collaboration,” in The 34th

Annual ACM Symposium on User Interface Software and Technology,
2021, pp. 613–625.

[59] B. Ikeda and D. Szafir, “Programar: Augmented reality end-user robot
programming,” ACM Transactions on Human-Robot Interaction, 2024.

[60] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
trigger-action programming in the smart home,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2014,
pp. 803–812.

[61] G. Ghiani, M. Manca, F. Patern` o, and C. Santoro, “Personalization
of context-dependent applications through trigger-action rules,” ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 24, no. 2,
pp. 1–33, 2017.

[62] W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang,
M. L. Littman, and B. Ur, “How users interpret bugs in trigger-action
programming,” in Proceedings of the 2019 CHI conference on human
factors in computing systems, 2019, pp. 1–12.

[63] J. Huang and M. Cakmak, “Supporting mental model accuracy in trigger-
action programming,” in Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp.
215–225.

[64] L. Zhang, C. Zhou, M. L. Littman, B. Ur, and S. Lu, “Helping users
debug trigger-action programs,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 4, pp. 1–32,
2023.

[65] F. Corno, L. De Russis, and A. Monge Roffarello, “Empowering end
users in debugging trigger-action rules,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 2019, pp. 1–13.

[66] M. Manca, F. Patern` o, C. Santoro, and L. Corcella, “Supporting end-user
debugging of trigger-action rules for IoT applications,” International
Journal of Human-Computer Studies, vol. 123, pp. 56–69, 2019.

[67] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and B. Ur,
“AutoTap: Synthesizing and repairing trigger-action programs using
LTL properties,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 281–291.

[68] L. Bu, W. Xiong, C.-J. M. Liang, S. Han, D. Zhang, S. Lin, and X. Li,
“Systematically ensuring the confidence of real-time home automation
IoT systems,” ACM Transactions on Cyber-Physical Systems, vol. 2,
no. 3, pp. 1–23, 2018.

[69] C.-J. M. Liang, L. Bu, Z. Li, J. Zhang, S. Han, B. F. Karlsson, D. Zhang,
and F. Zhao, “Systematically debugging IoT control system correctness
for building automation,” in Proceedings of the 3rd ACM International
Conference on Systems for Energy-efficient Built Environments, 2016,
pp. 133–142.

[70] V. Zhao, L. Zhang, B. Wang, M. L. Littman, S. Lu, and B. Ur,
“Understanding trigger-action programs through novel visualizations of
program differences,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021, pp. 1–17.

[71] F. Corno, L. De Russis, and A. Monge Roffarello, “TAPrec: Supporting
the composition of trigger-action rules through dynamic recommenda-
tions,” in Proceedings of the 25th International Conference on Intelligent
User Interfaces, 2020, pp. 579–588.

[72] I. N. B. Yusuf, D. B. A. Jamal, L. Jiang, and D. Lo, “RecipeGen++: an
automated trigger action programs generator,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 1672–1676.

[73] A. Mattioli and F. Patern` o, “Recommendations for creating trigger-
action rules in a block-based environment,” Behaviour & Information
Technology, vol. 40, no. 10, pp. 1024–1034, 2021.

[74] L. Zhang, W. He, O. Morkved, V. Zhao, M. L. Littman, S. Lu, and
B. Ur, “Trace2TAP: Synthesizing trigger-action programs from traces
of behavior,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, no. 3, pp. 1–26, 2020.

[75] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-
based smart homes,” in Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security, 2016, pp. 97–102.

[76] F. Corno, L. De Russis, and A. Monge Roffarello, “From users’
intentions to if-then rules in the internet of things,” ACM Transactions
on Information Systems (TOIS), vol. 39, no. 4, pp. 1–33, 2021.

[77] T.-H. K. Huang, A. Azaria, and J. P. Bigham, “Instructablecrowd:
Creating if-then rules via conversations with the crowd,” in Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, 2016, pp. 1555–1562.

[78] M. L. Puterman, Markov Decision Processes—Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley & Sons, Inc., 1994.

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

776

https://doi.org/10.1145/3610977.3634969
https://doi.org/10.1145/3610977.3634969
https://cloudblogs.microsoft.com/dynamics365/bdm/2019/11/04/announcing-rpa-enhanced-security-no-code-virtual-agents-and-more-for-microsoft-power-platform/
https://cloudblogs.microsoft.com/dynamics365/bdm/2019/11/04/announcing-rpa-enhanced-security-no-code-virtual-agents-and-more-for-microsoft-power-platform/
https://cloudblogs.microsoft.com/dynamics365/bdm/2019/11/04/announcing-rpa-enhanced-security-no-code-virtual-agents-and-more-for-microsoft-power-platform/

[79] D. H. Ackley and M. L. Littman, “Interactions between learning and
evolution,” in Artificial Life II: Santa Fe Institute Studies in the Sciences
of Complexity, C. Langton, C. Taylor, J. D. Farmer, and S. Ramussen,
Eds. Redwood City, CA: Addison-Wesley, 1991, vol. 10, pp. 487–509.

[80] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically motivated
reinforcement learning: An evolutionary perspective,” IEEE Transac-
tions on Autonomous Mental Development, vol. 2, no. 2, pp. 70–82,
2010.

[81] D. Abel, W. Dabney, A. Harutyunyan, M. K. Ho, M. L. Littman,
D. Precup, and S. Singh, “On the expressivity of Markov reward,” in
Neural Information Processing Systems, 2021.

[82] F. Bacchus, C. Boutilier, and A. Grove, “Rewarding behaviors,” in Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence.
AAAI Press/The MIT Press, 1996, pp. 1160–1167.

[83] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan,
“Environment-independent task specifications via GLTL,” 2017, arXiv
preprint arXiv:1704.04341.

[84] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Reward
machines: Exploiting reward function structure in reinforcement learn-
ing,” Journal of Artificial Intelligence Research, vol. 73, pp. 173–208,
2022.

[85] W. B. Knox and P. Stone, “Interactively shaping agents via human
reinforcement: The TAMER framework,” in Proceedings of the Fifth
International Conference on Knowledge Capture, 2009, pp. 9–16.

[86] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L.
Roberts, M. E. Taylor, and M. L. Littman, “Interactive learning from
policy-dependent human feedback,” in Proceedings of the Thirty-Fourth
International Conference on Machine Learning, 2017.

[87] D. Porfirio, M. Roberts, and L. M. Hiatt, “Goal-oriented end-user
programming of robots,” in Proceedings of the 2024 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, 2024, pp. 582–591.

[88] PAL Robotics, “Tiago mobile manipulator robot,” 2024. [Online].
Available: https://pal-robotics.com/robots/tiago/

[89] Hello Robot, “Stretch 3 a fully integrated mobile manipulator,” 2024.
[Online]. Available: https://hello-robot.com/stretch-3-product

[90] D. Bahdanau, F. Hill, J. Leike, E. Hughes, A. Hosseini, P. Kohli,
and E. Grefenstette, “Learning to understand goal specifications by
modelling reward,” arXiv:1806.01946, 2018.

[91] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015, dqn.

[92] [Online]. Available: https://github.com/jennjwang/eup-blockly.git
[93] Google Developer Program, “Blockly,” 2024. [Online]. Available:

https://developers.google.com/blockly/
[94] J. Brooke, “SUS: A quick and dirty usability scale,” Usability Evaluation

in Industry, vol. 189, no. 3, pp. 189–194, 1996.

Session 7B: Humans Teaching Robots HRI 2025, March 4-6, 2025, Melbourne, Australia

777

https://pal-robotics.com/robots/tiago/
https://hello-robot.com/stretch-3-product
https://github.com/jennjwang/eup-blockly.git
https://developers.google.com/blockly/

	I Introduction
	II Related Work
	II-A End-User Robot Programming
	II-B Sequential Programming
	II-C Trigger-Action Programming (TAP)
	II-D Markov Decision Process (MDP) Programming

	III Enabling End Users to Specify RL Problems
	III-A Key Challenges and Design Decisions
	III-B Choice of RL Algorithm and Performance

	IV User Interface Design
	IV-A ()
	IV-B ()
	IV-C ()
	IV-D ()

	V User Study Methodology
	V-A Programming Tasks and Task Features
	V-B User Study Protocol
	V-C Measures
	V-D Statistical Analysis

	VI Results
	VI-A Participants
	VI-B Program Correctness
	VI-C Performance on Task Features
	VI-D Time to Complete the Program
	VI-E Program Length
	VI-F User Experiences of Programming the Tasks
	VI-G System Usability
	VI-H Types of Errors in Programming Paradigms
	VI-H1 Common Errors in
	VI-H2 Common Errors in
	VI-H3 Common Errors in
	VI-H4 Common Errors in

	VII Discussion & Conclusion
	VII-A Takeaways from RL End-User Programming
	VII-B Future Improvements to End-User RL Programming
	VII-C Limitations
	VII-D Generalizability of End-User RL Programming

	References

