
Supplementary Material:
Enabling End Users to Program Robots

Using Reinforcement Learning

Contents
1 User Interface

1.1 Blocks Used For the Different Programming Paradigms
1.2 Sequential Programming
1.3 Trigger-Action Programming
1.4 Full MDP Programming
1.5 Goal-Only MDP Programming

2 Tasks Participants Were Asked to Complete

3 Tutorial
3.1 Sequential Programming

3.1.1 Part 1: Explanation of Sequential Programming
3.1.2 Part 2: Sequential Programming Interactive Component

3.2 Trigger-Action Programming
3.2.1 Part 1: Explanation of Trigger-Action Programming
3.2.2 Part 2: Trigger-Action Programming Interactive Component

3.3 Full MDP Programming
3.3.1 Part 1: Explanation of Full MDP Programming
3.3.2 Part 2: Full MDP Programming Interactive Component

3.4 Goal-Only MDP Programming
3.4.1 Part 1: Explanation of Goal-Only MDP Programming
3.4.2 Part 2: Goal-Only MDP Programming Interactive Component

4 Survey Instrument
4.1 Pre-experiment Survey
4.2 Task Follow-up Survey
4.3 End of Experiment Survey

5 Program Correctness for Each Task

6 Types of Errors Made in Programming Paradigms
6.1 Incorrect Solution Analysis
6.2 Errors Made by Participants in Each Programming Paradigm
6.3 Common Types of Errors Made in Sequential Programming
6.4 Common Types of Errors Made in Trigger-Action Programming
6.5 Common Types of Errors Made in Full MDP Programming
6.6 Common Types of Errors Made in Goal-Only MDP Programming

1 User Interface
We present an end-user programming interface we designed that allows users to author programs that instruct a simu-
lated robot to complete tasks in an everyday environment — the home. In this simple home environment, the user can
program a TIAGo mobile manipulator robot to complete tasks as a household assistant. The home we designed has
four rooms: kitchen, bedroom, playroom, and porch. Depending on the tasks, the environment includes a person and
a range of everyday objects (e.g., toys, a cup of coffee, mail).

Figure 1: Corresponding to Figure 1 from the body of the paper, this is a larger screenshot of our graphical interface
that also shows the task description as participants saw them. Here, the participant is programming the robot to deliver
coffee to them (Task 4) using the Goal-MDP paradigm.

1.1 Blocks Used For the Different Programming Paradigms

Table 1: We present the different types of blocks participants used in each paradigm to solve Task 4: Coffee Delivery.
We list the interfaces that share the same blocks.

Paradigm(s) Block(s)
Actions

Seq, TAP,
Full-MDP,
Goal-MDP

Goals

Full-MDP,
Goal-MDP

States

Seq, TAP

Full-MDP

Events

TAP

Organization Structure

Seq

TAP

Full-MDP

Full-MDP,
Goal-MDP

Controls

Seq

TAP

Seq, TAP

Full-MDP,
Goal-MDP

1.2 Sequential Programming

Figure 2: The graphical interface in Blockly for Sequential Programming (Seq) with the Control blocks displayed.
Here, the user is programming the robot to deliver coffee to them (Task 4).

Figure 3: The graphical interface in Blockly for Sequential Programming (Seq) with the Actions blocks displayed in
the coffee delivery task (Task 4).

Figure 4: The graphical interface in Blockly for Sequential Programming (Seq) with the States blocks displayed in the
coffee delivery task (Task 4).

1.3 Trigger-Action Programming

Figure 5: The graphical interface in Blockly for Trigger-Action Programming (TAP) with the Control blocks displayed.
Here, the user is programming the robot to deliver coffee to them (Task 4).

Figure 6: The graphical interface in Blockly for Trigger-Action Programming (TAP) with the Action blocks displayed
in the coffee delivery task (Task 4).

Figure 7: The graphical interface in Blockly for Trigger-Action Programming (TAP) with the Event blocks displayed
in the coffee delivery task (Task 4).

Figure 8: The graphical interface in Blockly for Trigger-Action Programming (TAP) with the State blocks displayed
in the coffee delivery task (Task 4).

1.4 Full MDP Programming

Figure 9: The graphical interface in Blockly for Full MDP Programming (Full-MDP) with the Action blocks displayed
in the coffee delivery task (Task 4).

Figure 10: The graphical interface in Blockly for Full MDP Programming (Full-MDP) with the State blocks displayed
in the coffee delivery task (Task 4).

Figure 11: The graphical interface in Blockly for Full MDP Programming (Full-MDP) with the Goal blocks displayed
in the coffee delivery task (Task 4).

1.5 Goal-Only MDP Programming

Figure 12: The graphical interface in Blockly for Goal-Only MDP Programming (Goal-MDP) with the Goal blocks
displayed in the coffee delivery task (Task 4).

2 Tasks Participants Were Asked to Complete
For our user study, we designed 10 programming tasks where users would be asked to program a TIAGo mobile
manipulator robot to achieve a desired goal within a home environment. These tasks can be performed using each of
the Seq, TAP, Full-MDP, and Goal-MDP end-user programming paradigms. The 10 tasks, their descriptions, and the
task features they contain are shown in Table 2.

3 Tutorial
For each end-user programming paradigm, participants are tasked with completing a tutorial that had two parts. The
first part was introduced as part of the survey, where we explain how the general paradigm they are assigned to works
through simple examples. After finishing this task, they are presented with comprehension check questions. Feedback
is provided for any questions they answer incorrectly. Then, participants work on a second part of the tutorial, where
they use the interface to construct programs to solve basic tasks step-by-step, guided by explanations. We maintained
consistency across all paradigms by keeping the tutorial tasks uniform. In the following sections, we detail each of the
four tutorials we used in the study verbatim.

3.1 Sequential Programming
3.1.1 Part 1: Explanation of Sequential Programming

In this study, you will be provided with an interface for programming (virtual) robots. The interface lets you visually
construct code by dragging and connecting various types of puzzle-like pieces and blocks, as illustrated below.

You will program a robot to accomplish various tasks by providing a sequence the robot will follow step-by-step.
We will start with a tutorial to help you understand how to create a program by specifying sequential actions. At

the end of the tutorial, we will ask you to answer a few questions to make sure you understand the concepts.
Actions are specific tasks or behaviors that the robot can perform, such as moving to a location, picking up objects,

making sounds, or displaying information. For example:

Table 2: For each programming task we asked participants to complete, we list their titles, description, and features.

Task Description Features

Task 0: Baseline In this task, your goal is to program the robot to move from the bedroom to the kitchen. At
the start of the task, the robot will always be in the bedroom.

–

Task 1: Person Avoidance In this task, your goal is to have a robot avoid a person. This means that whenever the person
enters the same room as the robot, the robot should immediately exit that room. The person
will be constantly moving from room to room within the house.

Loop Required

Task 2: Toy in Random
Room

In this task, your goal is to program a robot to move a toy from some unknown room to the
playroom. Each time you run the program, the toy may start in a different room, and the
robot should move it to the playroom.

Multiple States and Actions, Initial Uncer-
tainty, Unwieldy Number of Possibilities

Task 3: Toys in Kitchen In this task, your goal is to program a robot to move all of the toys out of the kitchen. At
the start of the task, the toys will be in the kitchen. The robot should move the toys out of
the kitchen one at a time. Each time you run the program, there may be a different number
of toys in the kitchen, and the robot should be able to move all the toys (regardless of how
many there are) out of the kitchen.

Multiple States and Actions, Initial Uncer-
tainty, Unintuitive Goals

Task 4: Coffee Delivery In this task, your goal is to program a robot to deliver coffee from the kitchen to a person
in some unknown room (e.g. by putting down the coffee in the same room as the person).
Each time you run the program, the person may be in a different room, and the robot should
move the coffee from the kitchen to the room the person is in.

Multiple States and Actions, End Uncer-
tainty, Unwieldy Number of Possibilities

Task 5: Coffee-or-Mail
(Separate Rooms)

In this task, your goal is to program a robot to move either mail or coffee to their respective
destinations. At the start of the task, only the mail or the coffee will be moved to the porch.
If the mail is on the porch, the robot should move it to the kitchen. If coffee appears, the
robot should move it to the bedroom.

Multiple States and Actions, Initial Uncer-
tainty, End Uncertainty

Task 6: Mail on Porch In this task, your goal is to program a robot to move three pieces of mail off the porch. At
the start of the task, the three pieces of mail will be on the porch. The robot should move
the pieces of mail one at a time from the porch to any other room in the house so that there
is no longer any mail on the porch.

Multiple States and Actions, Unintuitive
Goals

Task 7: Person Avoidance
While in Kitchen

In this task, your goal is to program the robot to remain in the kitchen and also avoid being
in the same room as the person. If a person enters the kitchen, the robot should prioritize
avoiding the person and exit the kitchen and should re-enter the kitchen soon after the person
leaves the kitchen. The person will be constantly moving from room to room within the
house.

Loop Required, Priority Levels

Task 8: Coffee-or-Mail
(Same Room)

In this task, your goal is to program a robot to move either mail or coffee to the kitchen.
Each time you run your program, only the mail or the coffee will be on the porch. If the
mail is on the porch, the robot should move it to the kitchen. If the coffee appears, the robot
should also move it to the kitchen.

Multiple States and Actions, Initial Uncer-
tainty

Task 9: Coffee to Kitchen In this task, your objective is to program a robot to move a cup of coffee from the bedroom
to the kitchen. At the start of the task, the coffee will always appear in the bedroom, and the
robot will be in the playroom.

Multiple States and Actions

The element above represents a single action that instructs the robot to navigate towards its charging station. A
program must contain at least one action. If a program consists of multiple actions, actions will be executed in the
order they appear from top to bottom in the program. Specifically, after the current action has been completed, the
robot will begin the next action in the sequence.

In the program shown above, the robot will first execute the “Go to charging station” action completely. Only
after completing that action by reaching the charging station, it will then proceed to perform the “Dock to the charger”
action. This action instructs the robot to move and connect to the charger.

In certain scenarios, it is helpful to specify that actions depend on the state of the robot. One such control structure
is the “IF [state] DO [action]” control. For example:

A state (following the “if”) refers to the current conditions or situations of a robot or its environment. The robots
can detect these states, and they can be either true or false. For example, the state “battery charger is not in the room”
evaluates as either true (indicating that the battery charger is indeed not in the room) or false (indicating that the battery
charger actually is in the room).

If the state is found to be true (indicating that the charger is indeed not in the room), the action “make a beeping
sound” is carried out by the robot. If, however, the state is found to be false, the action is not taken. In other words, in
rules like the example here, whenever an event is triggered, the robot first verifies if the state is true before proceeding
to execute the action. In the “IF [state] DO [action]” control, actions will only be executed if the “state” is evaluated
as true.

Another handy tool is the “IF [state] DO [action] ELSE [action]” control. This control structure enables the robot
to execute an action only if a specific condition is met, and execute an alternative action if the condition is not met.
The “ELSE” part of the control structure refers to the alternative action that will be executed when the state in the “IF”
statement is evaluated as false. For example:

In this example, the robot will check the state of its battery. If it determines that the battery is low, the robot will
execute the “Go to the charging station” action. If the robot’s battery is not low (i.e., the state following the “IF” is
false), the action attached to the “ELSE” is executed, so the robot will “Clean the floor” instead.

Note that the “DO” and “ELSE” components can contain more than one action each. You have the flexibility
to include one or more actions within the “DO” block, which will be executed if the state associated with the “IF”

statement is satisfied. Similarly, you can attach one or more actions within the “ELSE” block, which will be executed
if the state connected to the “IF” statement is false.

The final control structure enables the repetition of actions. It is represented by the “REPEAT WHILE [state] DO
[action]” block. This construct allows for the continuous execution of the specified action as long as the “state” is true.
For example:

In this given example, the robot will perform the “Clean the floor” action in a continuous manner, provided that
the condition “the floor is dirty” is true. This means that the robot will keep cleaning the floor until it’s no longer dirty.

Note that without using “REPEAT WHILE [state] DO [action]”, all other control structures execute actions only
once, depending on the evaluation of a particular state.

In the context of this study, a program refers to a series of sequential actions. A complete program looks like the
following example:

The aim of this program is to ensure the robot’s battery is charged. To achieve the goal, the program specifies
sequences of actions the robot needs to execute.

In this example, the robot executes two actions sequentially when the program is started: “Go to charging station”
and “Dock to the charger.” The “Go to charging station” action allows the robot to navigate to the charging station.
The “Dock to the charger” action prompts the robot to physically connect itself to the nearby charger.

Note that the order of the two actions in this block affects the order in which the robot executes those actions. Fur-
thermore, because there is no “repeat” structure, these actions are only taken once. Finally, the actions are connected
to the “when the program starts” block so that the robot knows when to begin, which will always be the case for your
own programs.

Q1 If the “state” is false in the “IF [state] DO [action] ELSE [action]” control structure
⃝ the action associated with the “DO” will be executed by the robot
⃝ the action associated with the “ELSE” will be executed by the robot
⃝ the action associated with both the “ELSE and the “DO” will be executed by the robot
⃝ None of the actions will be executed

Q2 Which of these control structures can execute actions multiple times?
⃝ IF [state] DO [action] ELSE [action]

⃝ IF [state] DO [action]
⃝ REPEAT WHILE [state] DO [action]
⃝ Do action A FOREVER

Q3 Which of the following statements is not correct?
⃝ the actions in your program must be connected to the “when the program starts” block
⃝ the order of actions in a block specifies the order in which the robot will take those actions
⃝ when using an “IF” control structure, the robot will take either the “do” or “else” action, but not both
⃝ all of the actions in a list are taken in parallel (i.e., at the same time) by the robot

Q4 In the context of this study, please select the device you are going to program. Choose “robot” as your response.
⃝ Thermostat
⃝ Robot
⃝ Oven

3.1.2 Part 2: Sequential Programming Interactive Component

1. The goal of this part of the tutorial is to familiarize you with the robot programming interface so you can start
creating custom behaviors for robotic tasks. Let’s get started!

2. To begin, let’s take a look at the environment our robot will be operating in. The interface on the left displays
a visual representation of four rooms in a house: the bedroom, kitchen, porch, and playroom. This is where the
robot will be navigating and performing its tasks.

3. The right half of the interface is where you can program the robot.

4. The robot requires you to specify the sequence of ACTIONS it needs to complete the task (for example, pick up
a toy, move to the kitchen). The robot executes these sequences of actions one after the other towards completing
its mission.

Optionally, you may specify STATES or conditions that a robot may need to evaluate before executing an action.
For example, before trying to pick up a toy (action), the robot could first assess whether it is already holding a
toy (state).

5. Now, you will construct a program to make the robot take a toy from the kitchen to the playroom. At the start
the robot might be in any one of the four rooms. Therefore, we start by adding an action to move the robot to the
kitchen. To achieve this, Click on the “Actions” tab and drag the “go to kitchen” piece and attach it to the “when
the program starts” block on the programming interface. This action will make the robot move to the kitchen.

6. Once the robot arrives in the kitchen, it needs to pick up the toy. Before trying to pick up the toy, you will
program the robot to check if there is a toy. This check may seem unnecessary for this task since we know that
the toy will be in the kitchen. However, in other situations, the robot may not know where the toy is ahead of
time, which makes performing this check to see if the toy is in the room helpful. To check if a toy is present in
the room, click on the “Controls” tab and drag the “If do” block and attach it under the “Go to kitchen” piece.
Then, drag “a toy is in the room” piece from the “States” tab and attach it to the if.

7. Click on the “Actions” tab and drag the “Pick up the toy” piece and attach it next to do. This block instructs the
robot to pick up the toy only if it detects there is a toy in the room.

Once the robot picks up the toy, its next step is to take the toy to the kitchen. Drag the “Go to playroom” piece
and attach it below the “if do” block.

8. The final step is to put down the toy once the robot reaches the kitchen. Click on the “Actions” menu and drag
the “put down the item” piece below the last piece. Optionally, you can change “put down the item” to “put
down the toy” (click on the caret to change the item name). This will also instruct the robot to put down the toy.

Note that the action “put down the item” directs the robot to put down whatever object it is currently holding.
However, the action “put down the toy” specifically instructs the robot to put down the toy. If the robot is holding
an item other than a toy, the instruction “put down the toy” would not prompt the robot to release the held object.

9. If your program looks like the image on the right, then press the “Run Program” button to see your program
running.

Otherwise, move the blocks around to make them match the image and then run the program.

If the robot remains inactive after you click “Run Program,” double check that your program is correct. Click
“Stop Program” to make any needed changes and then rerun the program.

10. Now you will work on a second task. Your task is to program the robot to go back and forth between the kitchen
and the playroom forever. If you create a program like the one on the right, the robot will initially go to the
playroom, then to the kitchen, then back to the playroom. After this third action, the robot will come to a stop
in the kitchen and remain there.

11. However, this task requires you to program the robot to move forever. While it is possible to include additional
“Go to kitchen” and “Go to playroom” pieces, they will only contribute to one additional loop through the
movements.

Note that the “go to playroom” piece is the same as the “go to kitchen” piece (click on the caret to change the
room name).

12. To program the robot to move iteratively, first remove all the pieces you added to the programming interface by
dragging each of them to the trash bin found on the bottom right corner.

13. Then click on the “Control” tab and drag the piece labeled “repeat while do” and drop it on the programming
interface. Next from the “Control” tab drag the piece labeled “True” and attach it right next to while. The
“repeat while do” block runs all the pieces inside it as long as the condition you attach next to while is true.
Attaching True next to while means the block will be executed forever.

14. Next you need to put the actions that the robot needs to repeat inside the “repeat while do” block. For this task,
the robot needs to move to the kitchen. Click on “Actions” tab and drag the “Go to kitchen” piece and attach it
inside the “repeat while do” block.

Again, go to the “Actions” tab and drag “go to kitchen” piece inside the “repeat while do” block right below the
previous piece. Now, change kitchen to playroom by clicking on the caret (downward pointing triangle) of the
piece. This block makes sure the robot goes to the kitchen, then to the playroom, repeating forever.

15. If your program looks like the image on the right, then press the “Run Program” button to see your program
running.

Otherwise, move the blocks around to make them match the image and then run the program.

16. Now you will work on the final task. In this task, both a cup of coffee and a piece of mail will start on the porch,
and your objective is to program a robot to move the coffee and mail from the porch to the kitchen. However,
because the coffee is likely to get cold if outside too long, the robot should first move the coffee to the kitchen
and then come back to move the mail to the kitchen. The robot should take the coffee to the kitchen and then
the mail to the kitchen in this order.

17. First, remove all of the pieces added to the programming interface by dragging each one to the trash bin.

18. To have the robot perform the task, you’ll first need the robot to go to the porch. Click on the “Actions” tab and
attach the “Go to kitchen” piece to “when the program starts” block. Then change kitchen to porch.

19. Once the robot arrives on the porch, it needs to pick up the coffee. Click on the “Actions” tab and drag the “Pick
up any item” piece and attach it right below the previous piece. Then change the object to be picked up to coffee
by clicking on the caret (downward pointing triangle) of the piece you just attached. This block instructs the
robot to pick up the coffee.

20. Once the robot picks up the coffee, its next step is to take the coffee to the kitchen. Drag the “Go to kitchen”
piece and attach it below the “Pick up the coffee” piece

21. The next step is to put down the coffee once the robot reaches the kitchen. Click on the “Actions” menu and
drag the “put down the item” piece below the last piece. Again, you can change “the item” to “the coffee” to put
down the coffee.

22. Once the coffee is brought to the kitchen, the next part of the task is bringing the mail to the kitchen. Click
on the “Actions” tab and attach the “Go to kitchen” piece to the previously added piece and change kitchen to
porch.

23. Once the robot arrives on the porch, it needs to pick up the mail. Click on the “Actions” tab and drag the “Pick
up any item” piece and attach it right below the previous piece. Then change the object to be picked up to mail
from the options on the piece you just attached. This block instructs the robot to pick up the mail.

24. Once the robot picks up the mail, its next step is to take the mail to the kitchen. Drag the “Go to kitchen” piece
and attach it below the “Pick up the mail” block

25. The final step is to put down the mail once the robot reaches the kitchen. Click on the “Actions” menu and drag
the “put down the item” piece below the last piece.

26. If your program looks like the image on the right, then press the “Run Program” button to see your program
running.

27. Congratulations on completing the tutorial! Now click on the I’m done button.

3.2 Trigger-Action Programming
3.2.1 Part 1: Explanation of Trigger-Action Programming

You will program a robot to accomplish various tasks by formulating rules. These rules serve as instructions to guide
the robot’s actions and behavior.

We will start with a tutorial to help you understand how to create a program by specifying rules. At the end of the
tutorial, we will ask you to answer a few questions to make sure you understand the concepts.

Each rule you will create to program the robot will be in the same format as the following example:

The element presented above is called a rule. A rule consists of two components: an IF statement and a THEN
statement. The event “my battery became low” following the IF statement is called a trigger. Every time the trigger
event occurs, it takes the corresponding action specified in the THEN part of the rule.

Actions are specific tasks or behaviors that the robot can perform, such as moving to a location, picking up objects,
making sounds, or displaying information. For example:

The element above represents a single action that instructs the robot to navigate towards its charging station. In the
rule defined earlier, the action is “go to charging station”. Note that only a single action can be listed in each rule.

Note that triggers occur at a specific moment in time. At the instant “the robot’s battery became low” by falling
below some predetermined threshold (e.g., when the battery falls below 10%), this rule activates once and sends the
robot to its charging station. Even if the battery remains below 10%, the rule will only activate one time. The rule
would only activate again after the robot’s battery has been charged and it once again drops below that threshold.

Note that each “THEN” statement in a rule can only have one action. The action associated with a trigger is
executed when the trigger event occurs.

Sometimes it is helpful to specify that the robot should take an action only in certain circumstances. To enable
such behaviors, rules can combine a trigger, a state and an action using the word “and.” For example:

A state (following the “and”) refers to the current conditions or situations of a robot or its environment. The robots
can detect these states, and they can be either true or false. For example, the state “battery charger is not in the room”
evaluates as either true (indicating that the battery charger is indeed not in the room) or false (indicating that the battery
charger actually is in the room). If the state is found to be true (indicating that the charger is indeed not in the room),
the action “make a beeping sound” is carried out by the robot. If, however, the state is found to be false, the action is
not taken. In other words, in rules like the example here, whenever an event is triggered, the robot first verifies if the
state is true before proceeding to execute the action.

Note that you can write multiple, independent rules, where each is defined by an “IF” block. The order in which
the rules are listed does not matter. In the context of this study, a program refers to a collection of rules that are
composed of TRIGGERS, ACTIONS, and may optionally include STATES. A program containing two different rules
looks as follows:

The aim of this program is to ensure the robot’s battery is charged. The program specifies rules the robot needs to
follow in response to certain events. The rules also specify the actions that need to be taken in response to the triggered
events.

In this example, the robot responds to two triggers: “the program started” and “I arrived at the charging station.”
When the program starts, “the program started” event is triggered, prompting the robot to execute the “go to my
charging station” action. Once the robot reaches the charging station, the “I arrived at the charging station” event is
triggered, leading the robot to perform the “dock to the charger” action.

Note that the two rules in this example are effectively chained together since one rule’s trigger represents the other
rule’s action being completed. This does not always need to be the case; each rule can have a completely independent
trigger.

Q1 In this study, a trigger (the part following IF)
⃝ prompts a robot to execute an action as soon as the event associated with it occurs
⃝ is a condition sensed by the robot

⃝ either of the above
⃝ None of the above

Q2 In the context of this study, a rule can contain
⃝ A trigger and an action
⃝ A trigger, a state and an action
⃝ Either of the above
⃝ None of the above

Q3 Which of the following statements is not correct?
⃝ all rules in a program are contained under a “rules” block
⃝ the order in which rules are listed does not matter
⃝ each rule can contain only a single action
⃝ all rules in a program must be chained together (i.e., by having another rule trigger on the completion of
another rule’s action)

Q4 In the context of this study, please select the device you are going to program. Choose “robot” as your response.
⃝ Thermostat
⃝ Robot
⃝ Oven

3.2.2 Part 2: Trigger-Action Programming Interactive Component

1. The goal of this part of the tutorial is to familiarize you with the robot programming interface so you can start
creating custom behaviors for robotic tasks. Let’s get started!

2. To begin, let’s take a look at the environment our robot will be operating in. The interface on the left displays
a visual representation of four rooms in a house: the bedroom, kitchen, porch, and playroom. This is where the
robot will be navigating and performing its tasks.

3. The right half of the interface is where you can program the robot.

4. The robot is designed to act based on a set of rules you provide in the programming interface. Rules consist of
TRIGGERS, ACTIONS, and may optionally include STATES.

For each of the rules you create, you need to specify a TRIGGER, an event that, once it occurs, allows the robot
to respond (for example, arriving to the kitchen or its hands becoming full by picking up a toy).

5. In addition to triggers, the robot requires you to specify ACTIONS it needs to perform following the activation
of triggers (for example, pick up a toy, move to the kitchen).

Optionally, you may specify STATES or conditions that a robot may need to evaluate before executing an action
within a rule. For example, to know whether or not to pick up a toy (action), the robot needs to know whether it
is already holding a toy (state).

6. Once all the rules are provided to it, the robot executes actions based on these rules towards accomplishing a
task.

7. Now, you will construct a program to make the robot take a toy from the kitchen to the playroom. At the start
the robot might be in any one of the four rooms. Therefore, you need to specify a rule for the robot to go to the
kitchen as soon as the program starts. To achieve this, click on the “Controls” tab and drag the piece labeled
“if then” and attach it to the “Rules” block found in the programming interface. This block will create the “IF
statement and a THEN statement” structure of the first rule.

8. Next, click on the “Events” tab and drag the piece labeled “program started” and attach it to the if in the “if
then” piece in “Rules”. The “program started” piece is a trigger that activates only once when the program you
constructed starts.

9. Next, from the “Actions” tab, drag the “Go to kitchen” piece and attach it to the “if program started” piece.

The rule you just created instructs the robot to move to the kitchen when the program starts.

10. Once the robot arrives in the kitchen, it needs to pick up the toy. Before trying to pick up the toy, you will
program the robot to check if there is a toy. While this check may seem unnecessary, since we know that the
toy will be in the kitchen, in other cases, the robot may not know where the toy is ahead of time, which makes
performing this check to see if the toy is in the room helpful. To accomplish this, you need the “if and then”
rule. Click on the “Controls” tab and drag the “if and then” piece and attach it to the “Rules” block below the
previous rule.

11. You will need to have the robot detect the arriving to the kitchen event before it tries to pick up the toy. Now
drag the “I arrived at the kitchen” piece from the “Events” tab and attach it next to if. Then, click on the “States”
tab and drag “there is a toy in the room” and attach it next to and. This block would help the robot check if there
is a toy in the kitchen as soon as it arrives in the room. Once the robot arrives at the kitchen and there is a toy in
the room, the robot will now need to pick up the toy. For that, drag the “pick up the toy” piece from actions and
attach it next to then.

12. Now that you have enabled the robot to pick up the toy at the kitchen, you’ll need to program the robot to go to
the kitchen after having picked up the toy. To do this, we’ll rely on the event “I picked up an item” to instruct
the robot to then head to the playroom. To do this, click on the “Controls” tab and drag the “if then” piece and
attach it to the “Rules” below the last two blocks. Then, from the “Events” tab drag “I picked up an item” and
attach it to the new “if then” piece. This piece helps the robot detect if it just picked up something.

13. Click on the “Actions” tab and drag the “go to the kitchen” piece inside the newly added “if then” block. Change
the room from kitchen to playroom by clicking on the caret (downward pointing triangle) of the piece you just
attached. This will allow the robot to move to the playroom once it has picked up the toy.

14. Next you will need to program the robot to put down the toy as soon as it gets to the playroom. To do that,
drag the “if and then” block and attach it below the last block. Then you should add a way to detect if the robot
arrives at the playroom: “I have arrived at the playroom.” Add the piece “put down the item” as the action.

15. If your program looks like the image on the right, then press the “Run Program” button to see your program
running. Otherwise, move the blocks around to make them match the image and then run the program.

If the robot remains inactive after you click “Run Program,” double check that your program is correct. Click
“Stop Program” to make any needed changes and then rerun the program.

16. Note that, in this first example program, each rule triggered based off of another rule’s action completing (or the
start of the program). This does not always need to be the case. Sometimes, rules should trigger based off of
changes to the environment that the robot observes. For each task, you will need to consider what triggers make
the most sense. However, this strategy of having other rules trigger based on another rule’s action completion is
the most straightforward way to have the robot complete a sequence of actions since each rule can only contain
one action.

17. Now let’s work on the final task. In this task, both a cup of coffee and a piece of mail will start on the porch,
and your objective is to program a robot to move the coffee and mail from the porch to the kitchen. However,
because the coffee is likely to get cold if outside too long, the robot should first move the coffee to the kitchen
and then come back to move the mail to the kitchen. The robot should take the coffee to the kitchen and then
the mail to the kitchen in this order.

18. First remove all the pieces added to the “Rules” block by dragging them to the trash bin found on the bottom
right corner.

19. To have the robot perform the task, you’ll first need the robot to go to the porch. From the “Actions” tab, drag
the “Go to kitchen” piece and attach it to the piece “If program started.” Change the room from kitchen to porch
by clicking on the caret (downward pointing triangle) of the piece you just attached. This will ensure that the
robot will go to the porch once the program begins.

Note that the “go to porch” piece is the same as the “go to kitchen” piece (click on the caret to change the room
name).

20. Next, you need to program the robot to pick up the coffee once it gets to the playroom.

For this second rule, you will need to have the robot detect the arriving to the porch event before it tries to pick
up the coffee. To ensure that the robot executes each action appropriately, it is necessary to incorporate rules
like these for every desired action. This is because the robot is designed to carry out actions only when it detects
events being triggered. Click on the “Controls” tab and drag the “if and then” piece and attach it to the “Rules”
below the “If program started” block.

21. Now drag the “I arrived at the porch” piece from the “Events” tab and attach it next to if. Then, click on the
“States” tab and drag “there is coffee in the room” and attach it next to and. This block would help the robot
check if there is a coffee in the playroom as soon as it arrives in the room. This check is necessary, since we
want the robot to take the coffee to the kitchen before taking the mail. Once the robot arrives at the porch and
there is coffee in the room, the robot will now need to pick up the coffee. For that, drag the “pick up any item”
piece from actions and attach it next to then. Then change the object to be picked up to coffee by clicking on
the caret (downward pointing triangle) of the piece you just attached.

22. Now that you have enabled the robot to pick up the coffee at the porch, you’ll need to program the robot to go to
the kitchen after having picked up the coffee. To do this, we’ll rely on the event “I picked up an item” to instruct
the robot to then head to the kitchen. To do this, click on the “Controls” tab and drag the “if then” piece and
attach it to the “Rules” below the last two blocks. Then, from the “Events” tab drag “I picked up an item” and
attach it to the new “if then” piece. This piece helps the robot detect if it just picked up something.

23. Click on the “Actions” tab and drag the “go to the kitchen” piece inside the newly added “if then” block. This
will allow the robot to move to the kitchen once it has picked up the coffee.

24. Next you will need to program the robot to put down the coffee as soon as it gets to the kitchen. To do that,
drag the “if and then” block and attach it below the last block. Then you should add a way to detect if the robot
arrives at the kitchen: “I have arrived at the kitchen.” Add the piece “put down the item” as an action.

25. Once the coffee is brought to the kitchen, the next part of the task is bringing the mail to the kitchen. To do this,
click on the “Controls” tab and drag the “if then” piece and attach it to the “Rules” below the previous blocks.
Then the event that was just triggered is associated with dropping the coffee specifically “I put down the coffee”.
Drag this block from the events tab and attach it to the new rule. Then attach the “go to porch block” action.

26. Once the robot is on the porch, it needs to pick up the mail. For that, drag a new “if and then” block and attach
it below the last rule block. Then drag the “I arrived at the porch” piece from the “Events” tab and attach it next
to if. Then, click on the “States” tab and drag “there is no coffee in the room” and attach it next to and. The
check “there is no coffee in the room” is important because the first item the robot needs to move is the coffee.
The robot should move the mail only when there is no coffee on the porch. From the action tab drag the “pick
up the mail” action and attach it to the newly added rule. Note that this rule is very similar to one you created
earlier, differing only in the “and” section.

27. You’ve already set a rule for the robot to go to the kitchen when it picks up something, so there’s no need for a
second rule. Similarly, you have set a rule for the robot’s to drop what it is holding as soon as it arrives in the
kitchen. Hence, there is no need to introduce another rule for the robot’s behavior upon arrival in the kitchen.

28. If your program looks like the image on the right, then press the “Run Program” button to see your program
running. Otherwise, move the blocks around to make them match the image and then run the program.

If the robot remains inactive after you click “Run Program,” double check that your program is correct. Click
“Stop Program” to make any needed changes and then rerun the program.

29. Congratulations on completing the tutorial! Now click on the I’m done button.

3.3 Full MDP Programming
3.3.1 Part 1: Explanation of Full MDP Programming

You will program a robot to accomplish various tasks by defining STATES, ACTIONS and GOALS the robot can
reference to automatically come up with a plan to accomplish its tasks. A program refers to a collection of STATES,
ACTIONS, and GOALS.

We will start with a tutorial to help you understand how to create a program by specifying states, actions, and
goals. At the end of the tutorial, we will ask you to answer a few questions to make sure you understand the concepts.

First, we will introduce what STATES, ACTIONS, and GOALS are individually. Afterwards, we will explain how
to combine them into a program.

A state refers to the current conditions or situations of a robot or its environment. The robot can detect these states,
and they can be either true or false. For example, the state “is my battery low?” evaluates as either true (indicating that
the robot’s battery is indeed low) or false (indicating that the robot’s battery is not low).The following element is an
example of a state:

Actions are specific tasks or behaviors that the robot can perform, such as moving to a location, picking up objects,
making sounds, or displaying information. For example:

The element above represents a single action that instructs the robot to navigate towards its charging station.
A goal represents a desired state that we want the robot to learn how to achieve. A state refers to the current

conditions or situations of a robot or its environment. The robot can detect these states, and they can be either true or
false. For example, the state “is my battery low?” evaluates as either true (indicating that the robot’s battery is indeed
low) or false (indicating that the robot’s battery is not low).

Based on the goal(s) your program indicates, the robot will automatically try different actions in its environment
to learn how to achieve the specified goal(s) as quickly and as often as possible. Consider the following example goal:

In the example, the goal “My battery is charging” means that the robot should make sure its battery is being
charged. This goal directs the robot to try out its available actions, which in our situation typically leads to the robot
finding a charging station and connecting to it to recharge its battery. The robot plans and executes actions that make
progress towards achieving the goal(s) you specify.

Certain goals may involve combining two conditions using the word “and.” For instance:

The goal “the room is clean and my battery is not low” combines two conditions that need to be met simultaneously.
It means that the robot aims to have a clean room while ensuring that its battery is not low on power. Both the
cleanliness of the room and the battery level need to be in a satisfactory state for the goal to be achieved; meeting only
one condition of this combined goal is insufficient when the conditions are connected with “and.”

The collection of goals you specify may include multiple different goals for which you indicate different priorities.
You can specify three different levels of priority for goals: high, medium, and low.

For instance, the goal “my battery is not low” might be assigned high priority, and the goal “the room is clean”
might be assigned medium priority. This means that the robot will try both to keep its battery charged and to clean the
room. If it cannot do both at once, it will elect to charge its battery. Two goals that are placed at the same priority level
are given equal importance.

In the context of this study, a program refers to a collection of STATES, ACTIONS, and GOALS that you specify.
A complete program looks like the following:

The aim of this program is to make sure that the robot’s battery is charging, which is reflected in the goal statement.
To achieve the goal, the program specifies states that the robot needs to check when choosing actions. It also lists all
possible actions that the robot should consider performing as it attempts to achieve the goal conditions. By executing
appropriate actions and checking appropriate states, the robot can make progress towards achieving the stated goal.

In this example, the robot is provided with two actions it can use to make progress to the desired goal: “Go to
charging station” and “Dock to the charger.” The “Go to charging station” action allows the robot to navigate to the

charging station. The “Dock to the charger” action prompts the robot to physically connect itself to the nearby charger.
Note that the order of the two actions within the program’s action block does not affect how the robot achieves the
goal—it is just a list of actions for the robot to consider. However, this list of actions must include all of the different
actions the robot might need to use in the process of achieving the goal.

To achieve the goal of “My battery is charging,” the robot needs to consider the state “Am I next to the charging
station?” This state helps the robot determine whether it is currently located near the charging station or not, which
could be very important in deciding whether it should choose the “Go to charging station” or “Dock to the charger”
actions.

Reminder: A program can have multiple states,actions, and goals. The order in which states and actions are listed
does not matter. The order of goals within a given priority level does not matter.

Q1 In this study, a complete robot program requires
⃝ States and Actions
⃝ States only
⃝ Goal only
⃝ States, Actions, and Goal

Q2 The order in which actions are specified
⃝ directly influences the sequence in which the robot executes them
⃝ does not affect the sequence in which the robot executes them.
⃝ sometimes it does sometimes it does not
⃝ none of the above

Q3 Two conditions can be combined to form a goal using the word:
⃝ Goals
⃝ True
⃝ And
⃝ None of the above

Q4 In the context of this study, please select the device you are going to program. Choose “robot” as your response.
⃝ Thermostat
⃝ Robot
⃝ Oven

3.3.2 Part 2: Full MDP Programming Interactive Component

1. The goal of this part of the tutorial is to familiarize you with the robot programming interface so you can start
creating custom behaviors for robotic tasks. Let’s get started!

2. To begin, let’s take a look at the environment our robot will be operating in. The interface on the left displays
a visual representation of four rooms in a house: the bedroom, kitchen, porch, and playroom. This is where the
robot will be navigating and performing its tasks.

3. The right half of the interface is where you can program the robot.

4. The robot is designed to act based on GOALS that you specify. Goals are certain states or combinations of
states that we desire the robot to reach or achieve to complete its mission (for example, a toy is in the playroom,
the robot is in the kitchen) with specific levels of priorities. In addition to the goals, the robot requires you to
specify all of the ACTIONS it might need to complete the task (for example, pick up a toy, move to the kitchen).

5. Finally, the robot must be informed of the set of distinct STATES. States are the different conditions that a robot
may need to evaluate when choosing between different actions. For example, to know whether or not to pick
up a toy (action), the robot needs to know whether it is already holding a toy (state). You will need to give the
robot a comprehensive list of all of the states the robot needs to consider in learning how to achieve the goal.
This list will include states that are directly relevant to the GOAL, as well as intermediate states needed to reach
the goal. If a key state is missing, the robot won’t be able to tell when to take an action that is needed to achieve
the goal.

Once these are provided to it, the robot tries to find the most effective way to accomplish the task and then
executes the determined course of action.

6. Now, you will construct a program to make the robot take a toy from the kitchen to the playroom. At the start
the robot might be in any one of the four rooms.

7. To successfully perform this task, the robot needs a specification of the goals. The robot can only know it has
achieved its goals by sensing the environment. For the current task, the goal can be stated as the robot seeing
the toy in the playroom, which is how the robot would recognize that it has completed the task. Drag the “and”
piece from the Goal tab and attach it to the “Goals” piece. Then drag the “I am in the kitchen” piece from the
Goal tab and attach it to one of the empty spaces in “and”. Then change kitchen to playroom by clicking on the
caret (downward pointing triangle) of the piece you just added. Finally, drag the “a toy is in the room” piece
and attach it to the remaining space of the “and” piece.

8. To successfully perform the task, the robot needs to have a set of actions to try: going to the kitchen, going to
the playroom, picking up the toy, and putting down the toy. These are the full set of actions the robot needs to
perform to pick up the toy from the playroom and put it down in the kitchen. Note that the robot will figure out
the order in which to execute these actions to achieve this goal as long as you provide a complete list. Drag the
“go to kitchen” from the “Actions” tab and attach it to the “Actions” block. In addition, add the pieces “go to
playroom”, “pick up the toy”, and “put down the toy” to the “Actions” block.

Note that “go to playroom” comes the same base piece as “go to kitchen” (click on the caret to change the room
name).

9. Now the robot needs to know what states it will need to consider when learning which of these actions to take,
in which order, to reach the goal. To correctly choose its actions, the robot needs to check the states of being
in the kitchen, being in the playroom, seeing a toy in a room, and holding the toy. These are the relevant set of
states the robot needs for choosing actions for reaching the goal. Drag the pieces that represent each state (”Am
I in the kitchen?”, “Am I in the playroom?”, “Are my hands empty?”, and “Is there a toy in the current room”)
from the “States” tab and attach them to the “States” block. Again, you need to use the caret to change the room
name.

10. If your program looks like the image on the right, then press the “Run Program” button to see your program
running. Otherwise, move the blocks around to make them match the image and then run the program.

Note that the order of the pieces in the “States” and “Actions” blocks do not matter.

11. Now you will work on the final task. In this task, both coffee and mail will start on the porch, and your objective
is to program a robot to move the coffee and mail from the porch to the kitchen. However, because the coffee is
likely to get cold if outside too long, the robot should first move the coffee to the kitchen and then come back to
move the mail to the kitchen. The robot should take the coffee to the kitchen and then the mail to the kitchen in
this order.

12. First, remove all of the pieces added to the programming interface by dragging each one to the trash bin.

13. To have the robot perform the task, You need to specify two goals — the first is moving the coffee from the
porch to the kitchen, and the second is moving the mail from the porch. To make sure the first goal is satisfied
before the second, we will attach the first goal to the high priority slot in the “Goals” piece, and the second goal
to the medium priority slot.

Again, because the goal is sensed from the robot’s perspective, we need the robot to be in the room when the
goal is satisfied.

14. For the first goal, drag the “and” piece from the Goal tab and attach it to the slot for high priority in the “Goals”
piece. Then, click on the Goal tab again, locate the “I am in the kitchen” piece, and drag it to connect it to one
of the empty spaces in the “and” piece. Finally, add the piece “there is a toy in the room” and attach it to the
remaining space of the “and” piece. Then change toy to coffee by clicking on the caret (downward pointing
triangle) of the piece you just added.

15. For the second goal, drag the “and” piece from the Goal tab and attach it to the slot for medium priority in the
“Goals” piece. Then, click on the Goal tab again, locate the “I am in the kitchen” piece, and drag it to connect it
to one of the empty spaces in the “and” piece. Finally, add the piece “there is a toy in the room” and attach it to
the remaining space of the “and” piece. Then change toy to mail by clicking on the caret (downward pointing
triangle) of the piece you just added.

Note that the “there is a coffee in the room” piece is the same as the “there is mail in the room” (click on the
caret to change the room name).

16. To successfully perform the task, the robot needs to try a set of actions: going to the kitchen, going to the porch,
picking up the coffee, picking up the mail, putting down the coffee, and putting down the mail. Drag the “go to
kitchen” piece from the “Actions” tab and attach it to the “Actions” block. In addition, also add the pieces “go
to porch”, “pick up the coffee”, “pick up the mail”, and “put down the coffee”, and “put down the mail” to the
“Actions” block.

17. Now the robot needs to know what states it will need to check when deciding which of these actions to take to
reach the goal. To correctly choose its actions, the robot needs to check the states of being in the kitchen, being

on the porch, seeing a coffee, holding the coffee, seeing the mail, and holding the mail. These are the relevant
set of states the robot needs for choosing which actions to take, and in which order, for achieving its goals. Drag
the pieces that represent each state (”Am I in the kitchen?”, “Am I in the porch?”, “Are my hands empty?”, “Is
there coffee in the current room?”, and “Is there mail in the current room?”) from the “States” tab and attach
them to the “States” block.

18. If your program looks like the image on the right, then press the “Run Program” button to see your program
running. Otherwise, move the blocks around to make them match the image and then run the program.

Note that the order of the pieces in the “States” and “Actions” blocks do not matter.

19. Congratulations on completing the tutorial! Now click on the I’m done button.

3.4 Goal-Only MDP Programming
3.4.1 Part 1: Explanation of Goal-Only MDP Programming

You will program a robot to accomplish various tasks by providing it with one or more goals the robot can reference
to automatically come up with a plan to accomplish its tasks. A program refers to a collection of one or more goals.

We will start with a tutorial to help you understand how to create a program by specifying goals. At the end of the
tutorial, we will ask you to answer a few questions to make sure you understand the concepts.

A goal represents a desired state that we want the robot to learn how to achieve. A state refers to the current
conditions or situations of a robot or its environment. The robot can detect these states, and they can be either true or
false. For example, the state “is my battery low?” evaluates as either true (indicating that the robot’s battery is indeed
low) or false (indicating that the robot’s battery is not low).

Based on the goal(s) your program indicates, the robot will automatically try different actions in its environment
to learn how to achieve the specified goal(s) as quickly and as often as possible. Consider the following example goal:

In the example, the goal “My battery is charging” means that the robot should make sure its battery is being
charged. This goal directs the robot to try out its available actions, which in our situation typically leads to the robot
finding a charging station and connecting to it to recharge its battery. The robot plans and executes actions that make
progress towards achieving the goal(s) you specify.

Certain goals may involve combining two conditions using the word “and.” For instance:

The goal “the room is clean and my battery is not low” combines two conditions that need to be met simultaneously.
It means that the robot aims to have a clean room while ensuring that its battery is not low on power. Both the
cleanliness of the room and the battery level need to be in a satisfactory state for the goal to be achieved; meeting only
one condition of this combined goal is insufficient when the conditions are connected with “and.”

Your program (i.e., the collection of goals you specify) may include multiple different goals for which you indicate
different priorities. You can specify three different levels of priority for goals: high, medium, and low.

For instance, the goal “my battery is not low” might be assigned high priority, and the goal “the room is clean”
might be assigned medium priority. This means that the robot will try both to keep its battery charged and to clean the
room. If it cannot do both at once, it will elect to charge its battery. Two goals that are placed at the same priority level
are given equal importance.

A complete program with only a single goal could look like the following example:

The aim of this program is to make sure that the robot’s battery is charging, which is reflected in the goal statement
“my battery is charging.” By specifying this goal, the robot will try to determine what actions to take to make progress
towards achieving that goal.

Q1 In this study, a robot program is defined by
⃝ specifying a sequence of actions to be executed step by step
⃝ specifying a goal
⃝ can be either of the above
⃝ none of the above

Q2 Two conditions can be combined to form a goal using the word:
⃝ goals
⃝ true
⃝ and
⃝ none of the above

Q3 Which of the following statements is not correct?
⃝ a program may contain only a single goal, or it may contain multiple goals
⃝ goals that combine two conditions are considered satisfied as long as at least one condition is true
⃝ three different priority levels are possible for goals
⃝ all goals need to be given different priorities

Q4 In the context of this study, please select the device you are going to program. Choose “robot” as your response.
⃝ Thermostat
⃝ Robot
⃝ Oven

3.4.2 Part 2: Goal-Only MDP Programming Interactive Component

1. The goal of this part of the tutorial is to familiarize you with the robot programming interface so you can start
creating custom behaviors for robotic tasks. Let’s get started!

2. To begin, let’s take a look at the environment our robot will be operating in. The interface on the left displays
a visual representation of four rooms in a house: the bedroom, kitchen, porch, and playroom. This is where the
robot will be navigating and performing its tasks.

3. The right half of the interface is where you can program the robot.

4. The robot is designed to act based on a GOAL that you specify. Goals are certain states or combinations of
states that we desire the robot to reach or achieve to complete its mission (for example, a toy is in the playroom,
the robot is in the kitchen).

The robot will try to find the most effective way to accomplish the goal you specify and then executes that course
of action.

5. Now, you will construct a program to make the robot take a toy from the kitchen to the playroom. At the start
the robot might be in any one of the four rooms.

6. To successfully perform this task, the robot needs a specification of the goals. The robot can only know it has
achieved its goals by sensing the environment. For the current task, the goal can be stated as the robot seeing
the toy in the playroom, which is how the robot would recognize that it has completed the task. Drag the “and”
piece from the “Goal” tab and attach it to the “Goal” piece. Then drag “I am in the kitchen” piece from the Goal
tab and attach it to one of the empty spaces in “and”. Then change kitchen to playroom by clicking on the caret
(downward pointing triangle) of the piece you just added. Finally, drag “a toy is in the room” piece and attach it
to the remaining space of the “and” piece.

7. If your program looks like the image on the right, then press the “Run Program” button to see your program
running.

Otherwise, move the blocks around to make them match the image and then run the program.

8. Now you will work on the final task. In this task, both coffee and mail will start on the porch, and your objective
is to program a robot to move the coffee and mail from the porch to the kitchen. However, because the coffee is
likely to get cold if outside too long, the robot should first move the coffee to the kitchen and then come back to
move the mail to the kitchen. The robot should take the coffee to the kitchen and then the mail to the kitchen in
this order.

9. First, remove all of the pieces added to the programming interface by dragging each one to the trash bin.

10. To do this, you need to specify two goals — the first is moving the coffee from the porch to the kitchen, and
the second is moving the mail from the porch. To make sure the first goal is satisfied before the second, we will
attach the first goal to the high priority slot in the “Goals” piece, and the second goal to the medium priority
slot. Again, because the goal is sensed from the robot’s perspective, we need the robot to be in the room when
the goal is satisfied.

11. For the first goal, drag the “and” piece from the Goal tab and attach it to the slot for high priority in the “Goals”
piece. Then, click on the Goal tab again, locate the “I am in the kitchen” piece, and drag it to connect it to one
of the empty spaces in the “and” piece. Finally, add the piece “there is a toy in the room” and attach it to the
remaining space of the “and” piece. Then change toy to coffee by clicking on the caret (downward pointing
triangle) of the piece you just added.

12. For the second goal, drag the “and” piece from the Goal tab and attach it to the slot for medium priority in the
“Goals” piece. Then, click on the Goal tab again, locate the “I am in the kitchen” piece, and drag it to connect it
to one of the empty spaces in the “and” piece. Finally, add the piece “there is a toy in the room” and attach it to
the remaining space of the “and” piece. Then change toy to mail by clicking on the caret (downward pointing
triangle) of the piece you just added.

Note that the “there is a coffee in the room” piece is the same as the “there is mail in the room” (click on the
caret to change the room name).

13. If your program looks like the image on the right, then press the “Run Program” button to see your program
running. Otherwise, move the blocks around to make them match the image and then run the program.

14. Congratulations on completing the tutorial! Now click on the I’m done button.

4 Survey Instrument

4.1 Pre-experiment Survey
Thanks for participating in our study! The purpose of this study is to explore efficient methods for individuals to
communicate tasks to future home robots. You will be requested to complete several tasks using the interface we have
developed in order to assess its effectiveness and user-friendliness.

Q1 Have you used a system in which you write if-this-then-that rules to control devices or services? IFTTT, Zapier,
and NodeRed are common examples of such services.
⃝ Yes ⃝ No ⃝ Other

Q2 Are you majoring in, hold a degree in, or have held a job in any of the following fields: computer science;
computer engineering; information technology; or a related field?
⃝ Yes ⃝ No ⃝ I prefer not to answer

Q3 Have you ever completed a class or completed a class-length online tutorial about computer programming?
⃝ Yes ⃝ No ⃝ I prefer not to answer

Q4 If you have experience programming, what programming languages have you used? (If you do not have experi-
ence with programming languages, please put ”N/A” below)

Q5 Have you ever taken a class about, or completed equivalent tutorials about, or had equivalent work/hobby expe-
rience in, creating machine learning models?
⃝ Yes ⃝ No ⃝ I prefer not to answer

Q6 Have you ever completed a class or completed a class-length online tutorial or had equivalent work/hobby
experience in, creating reinforcement learning algorithms?
⃝ Yes ⃝ No ⃝ I prefer not to answer

4.2 Task Follow-up Survey
Q1 Please indicate the extent to which you agree or disagree with each statement about your experience with pro-

gramming the robot.

Strongly Disagree Disagree Neutral Agree Strongly Agree
I found the task to be easy. ⃝ ⃝ ⃝ ⃝ ⃝
I am confident that I have
correctly programmed the
robot to complete the task.

⃝ ⃝ ⃝ ⃝ ⃝

I was able to program the
robot to complete the task as
specified

⃝ ⃝ ⃝ ⃝ ⃝

To this one question, please
select ’Agree’ as your re-
sponse

⃝ ⃝ ⃝ ⃝ ⃝

Q2 Please write around 4 sentences describing the process you took to solve the task

Q3 Did you face a situation where you made a program, but later realized it was incorrect or the robot’s behavior did
not align with your expectations? Please describe the situation, the reasons for the error, and how you corrected
it. Please provide 2-3 sentences for each situation you describe.

4.3 End of Experiment Survey
Q1 What is your gender?

⃝ Female ⃝ Male ⃝ Non-binary ⃝ Prefer to self-describe ⃝ Prefer not to say

Q2 Whats is your age?
⃝ 18-24 years old ⃝ 25-34 years old ⃝ 35-44 years old ⃝ 45-54 years old ⃝ 55 years or older ⃝ Prefer
not to answer
Thank you for taking part in this study! Please click the button below to be redirected back to Prolific and
register your submission.

Strongly Disagree Disagree Neutral Agree Strongly Agree
I think that I would like to
use this system frequently.

⃝ ⃝ ⃝ ⃝ ⃝

I found the system unneces-
sarily complex.

⃝ ⃝ ⃝ ⃝ ⃝

I thought the system was
easy to use.

⃝ ⃝ ⃝ ⃝ ⃝

I think that I would need the
support of a technical person
to be able to use this system.

⃝ ⃝ ⃝ ⃝ ⃝

I found the various functions
in this system were well in-
tegrated.

⃝ ⃝ ⃝ ⃝ ⃝

I thought there was too
much inconsistency in this
system.

⃝ ⃝ ⃝ ⃝ ⃝

I would imagine that most
people would learn to use
this system very quickly.

⃝ ⃝ ⃝ ⃝ ⃝

I found the system very
cumbersome to use.

⃝ ⃝ ⃝ ⃝ ⃝

I felt very confident using
the system.

⃝ ⃝ ⃝ ⃝ ⃝

I needed to learn a lot of
things before I could get go-
ing with this system.

⃝ ⃝ ⃝ ⃝ ⃝

5 Program Correctness for Each Task
As shown in Figure 13, we found differences across paradigms in Task 3 (χ2 = 24.67, p < 0.001), Task 5 (χ2 =
13.66, p = 0.02), Task 6 (χ2 = 34.72, p < 0.001), and Task 8 (χ2 = 18.96, p = 0.002). Pairwise comparisons
for Task 3 revealed that TAP (χ2 = 17.83, p < 0.001) and Seq (χ2 = 14.14, p = 0.001) had significantly higher
correctness rate compared to Full-MDP. Pairwise comparisons for Task 5 revealed that participants who were in
TAP condition performed significantly worse than Seq (χ2 = 11.75, p = 0.004). Pairwise comparisons for Task 6
showed that participants in TAP had significantly higher average correctness compared to both Full-MDP (χ2 =
16.01, p < 0.001) and Goal-MDP (χ2 = 9.42, p = 0.006). Similarly, participants who used Seq had significantly
higher correctness than Full-MDP (χ2 = 20.32, p < 0.001) and Goal-MDP (χ2 = 13.84, p = 0.001). Finally, on
Task 8, pairwise comparisons revealed that Goal-MDP had a lower correctness rate than both Seq (χ2 = 14.07, p =
0.001) and TAP (χ2 = 7.45, p = 0.03). For all the remaining pairwise comparisons we did not find significant
differences.

6 Types of Errors Made in Programming Paradigms

6.1 Incorrect Solution Analysis
To identify the types of errors featured in the incorrect solutions, the first and second authors reviewed all incorrect
submissions together and agreed upon the error categories (listed below) based on their prevalence in each paradigm.
We labeled each incorrect solution based on these categories and grouped the solutions that did not fall under these cat-
egories as miscellaneous. In our analysis, we counted each unique type of error that the participants made, irrespective
of the number of times they made the same error.

1. Anticipating Environment is when participants neglect scenarios, often in tasks featuring Initial Uncertainty, End
Uncertainty, and Unwieldy Number of Possibilities. For example, in Task 5, several participants programmed

0
 Baseline

1
 Person

Avoidance

2
 Toy in

 Random
 Room

3
 Toys in
 Kitchen

4
 Coffee
 Delivery

5
 Coffee-
or-Mail

(Separate)

6
 Mail on
 Porch

7
 Person

 Avoidance
While in
 Kitchen

8
 Coffee
-or-Mail
(Same)

9
 Coffee to
 Kitchen

Task

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss
 R

at
e

**

** ***

*

**

*

Seq TAP Full-MDP Goal-MDP

Figure 13: The proportion of participants whose program was correct by task and paradigm. * p < 0.05, ** p < 0.01,
*** p < 0.001.

the robot to move only one of the coffee or mail.

2. No Priority occurs in tasks where participants fail to establish a clear order for task completion.

3. Missing Loop occurs in Loop Required tasks when Seq participants fail to incorporate a loop in their solutions.

4. Loop Required (Wrong Condition) occurs in Loop Required tasks when Seq participants a loop but select the
wrong condition.

5. Conflicting Rules occurs when TAP participants program two or more rules that prescribe different actions
triggered by the same event or event-state combination.

6. Missing Rule occurs when TAP participants omit certain rules necessary for task completion.

7. Wrong Event occurs when TAP participants incorrectly define the event in the rule trigger. Notably, TAP requires
a rule with the event “the program started” to specify the robot’s action at the start of each program.

8. Wrong State occurs when TAP participants incorrectly define the state attribute in the trigger in a rule.

9. Underspecified States and Actions are when Full-MDP participants provide a partial list of actions and states
attributes necessary for the robot to complete the task.

10. Sequential Goal occurs when Full-MDP or Goal-MDP participants delineate the goals at every step of complet-
ing the task rather than stating the final desired outcome.

11. Counterintuitive Goal occurs when Full-MDP or Goal-MDP participants seem to misunderstand how the robot
senses the goal state for task completion.

12. Wrong Use of ‘AND’ occurs when Full-MDP or Goal-MDP participants seem to interpret the ‘and’ block by its
semantic meaning in natural language instead of recognizing it as a Boolean logic operator.

6.2 Errors Made by Participants in Each Programming Paradigm
We examined the incorrect solutions submitted by 147 out of our 409 participants to identify distinct types of errors
in each paradigm. In this section, we describe the most prevalent error types that more than 10% of the participants
made in their incorrect programs. Table 3 provides a detailed breakdown of all error types, including the number
of participants who made each mistake and the percentage of incorrect solutions within each end-user programming
paradigm.

Table 3: For incorrect solutions, we report the types of errors participants made in each programming paradigm.

Paradigm Errors Made

Seq Anticipating Environment (N=13, 48.1%), Missing Loop (N=10, 37.0%), and Loop Required (Wrong Condition) (N=8,
29.6%), Substitution Error (N=5, 18.5%), Empty Solutions (N=2, 7.4%), Miscellaneous (N=2, 7.4%), Infinite Loop (N=1,
3.7%)

TAP Anticipating Environment (N=18, 45.0%), Conflicting Rules (N=13, 32.5%), Missing Rule (N=12, 30.0%), Wrong Event
(N=9, 22.5%), Wrong State (N=4, 10.0%), Start Misuse (N=3, 7.5%), No Priority (N=2, 5.0%), Miscellaneous (N=2,
5.0%), Infinite Loop (N=1, 2.5%), Substitution Error (N=1, 2.5%)

Full-MDP Underspecified States and Actions (N=26, 49%), Sequential Goal (N=20, 37.7%), Anticipating Environment (N=13,
24.5%), Counterintuitive Goal (N=12, 22.6%), No Priority (N=12, 22.6%), Miscellaneous (N=6, 11.3%), Wrong Use of
‘AND’ (N=4, 7.5%), Substitution Error (N=2, 3.8%), Impossible Goal (N=1, 1.9%)

Goal-MDP Anticipating Environment (N=23, 46%), Sequential Goal (N=17, 34.0%), No Priority (N=15, 30.0%), Counterintuitive
Goal (N=10, 20.0%), Wrong Use of ‘AND’ (N=6, 12.0%), Empty Solutions (N=3, 6.0%), Substitution Error (N=3, 6.0%),
Miscellaneous (N=3, 6%), Impossible Goal (N=1, 2.0%)

6.3 Common Types of Errors Made in Sequential Programming

Table 4: We present the incorrect programs that Seq participants constructed to solve different tasks. We list the tasks
that these programs were aiming to achieve.

Error Incorrect Program
Anticipating Environment Task 3: Toys in Kitchen

Missing Loop Task 1: Person Avoidance

Wrong Condition Task 1: Person Avoidance

6.4 Common Types of Errors Made in Trigger-Action Programming

Table 5: We present the incorrect programs that TAP participants constructed to solve different tasks. We list the tasks
that these programs were aiming to achieve.

Error Incorrect Program
Anticipating Environment Task 2: Toy in Random Room

Conflicting Rules Task 5: Coffee-or-Mail (Separate Rooms)

Missing Rule Task 5: Coffee-or-Mail (Separate Rooms)

Wrong Event Task 0: Baseline

Wrong State Task 4: Coffee Delivery

6.5 Common Types of Errors Made in Full MDP Programming

Table 6: We present the incorrect programs that Full-MDP participants constructed to solve different tasks. We list
the tasks that these programs were aiming to achieve.

Error Incorrect Program
Underspecified States and
Actions

Task 9: Coffee to Kitchen

Anticipating Environment Task 4: Coffee Delivery

Sequential Goal Task 6: Mail on Porch

No Priority Task 7: Person Avoidance While in Kitchen

Counterintuitive Goal Task 3: Toys in Kitchen

Wrong Use of ‘AND’ Task 7: Person Avoidance While in Kitchen

6.6 Common Types of Errors Made in Goal-Only MDP Programming

Table 7: We present the incorrect programs that Goal-MDP participants constructed to solve different tasks. We list
the tasks that these programs were aiming to achieve.

Error Incorrect Program

Anticipating Environment Task 4: Coffee Delivery

Sequential Goal Task 6: Mail on Porch

No Priority Task 7: Person Avoidance While in Kitchen

Counterintuitive Goal Task 6: Mail on Porch

Wrong Use of ‘AND’ Task 8: Coffee-or-Mail (Same Room)

	User Interface
	Blocks Used For the Different Programming Paradigms
	
	
	
	

	Tasks Participants Were Asked to Complete
	Tutorial
	
	Part 1: Explanation of
	Part 2: Interactive Component

	
	Part 1: Explanation of
	Part 2: Interactive Component

	
	Part 1: Explanation of
	Part 2: Interactive Component

	
	Part 1: Explanation of
	Part 2: Interactive Component

	Survey Instrument
	Pre-experiment Survey
	Task Follow-up Survey
	End of Experiment Survey

	Program Correctness for Each Task
	Types of Errors Made in Programming Paradigms
	Incorrect Solution Analysis
	Errors Made by Participants in Each Programming Paradigm
	Common Types of Errors Made in
	Common Types of Errors Made in
	Common Types of Errors Made in
	Common Types of Errors Made in

